• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 18
  • 18
  • 11
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design considerations for cold formed lipped channel steel sections in composite slab systems

Pretorius, Jock Milne 06 May 2008 (has links)
The use of lipped channel members as the reinforcing for composite beams in rib and block type slab systems is advantageous due to its lightweight nature which facilitates efficiently in construction. The main consideration in the design if such composite members is the integrity of the shear bond at the concrete/ steel interface. Premature de-bonding of the concrete from the steel results in an overall loss of structural strength of the composite member. Certain guidelines are to be established to facilitate in the design of such systems. In this research project the shear bond strength of composite members using lipped channel members is investigated by interrogating the results from three independent research experiments. Design formulas from first principles are developed to more easily benchmark the behaviour of such members. Complex and simple equations are developed and the results obtained are compared to similar shear bond stresses obtained from literature. A reasonably acceptable correlation is achieved. A comparative study was also carried out between the various experimental beams regarding vertical shear, flexural strength and short-term deflections. The purpose was to ascertain what effect early shear bond failure has on these structural properties. The formulas used to benchmark the results were the well known formulas used for the design and evaluation of reinforced concrete members. The results were tabulated showing the difference between the calculated and experimental results. As a result of the investigation the following conclusions seem justified :  The simple equations as developed for horizontal shear failure give acceptable results which are within the range as given by more complex equations.  The composite beam has a certain amount of reserve shear strength even after the initial onset of horizontal shear failure. iv  The reinforcing ratio, the concrete strength and the slenderness ratio of the composite beam all have an influence on the level of horizontal stress failure.  The composite beams tend to fail at levels higher than that predicted by the homogeneous shear equations but lower than the predicted flexural equations. The parameters which influence this are again the reinforcing ratio, the concrete strength and the slenderness ratio.  Once a composite beam has experienced shear bond failure the deflection integrity of the beam is completely compromised. The above conclusions show the designer that caution must be exercised when using lipped channel members in rib and block slab systems.
2

Sobre o comportamento estrutural e o dimensionamento de lajes mistas de aço e concreto com armadura adicional / On the structural behavior and the design of composite slabs with additional reinforcement

Grossi, Luiz Gustavo Fernandes 25 October 2016 (has links)
Usualmente, em situações práticas de projeto de lajes mistas, procura-se uniformizar ao máximo a espessura das fôrmas de aço, normalmente por razões econômicas (produção em larga escala). Entretanto, em alguns casos, há a necessidade de se especificarem algumas fôrmas com maior espessura, solução essa pouco competitiva no mercado brasileiro. Uma alternativa economicamente interessante em relação ao aumento de espessura é a inserção de armadura adicional, mantendo-se assim a espessura padrão (em geral 0,80 mm) e obtendo-se aumento da área de aço por meio de vergalhões. No entanto, por se tratar de uma solução inusual, o comportamento estrutural das lajes mistas com armadura adicional e seus critérios e diretrizes de dimensionamento não são previstos em normas e manuais técnicos: a ABNT NBR 8800 (2008, p. 226) e o Eurocode 4 (2004, p. 104) mencionam que, caso haja armadura para resistir ao momento fletor positivo, a formulação apresentada deverá ser adequadamente ajustada, mas não apresentam os respectivos critérios e equacionamentos. O ANSI/ASCE 3-91 (1992), o CSSBI S2-2008 (2008) e o ANSI/SDI C-2011 (2011) não mencionam a possibilidade de armadura adicional. Diante desse cenário, investigou-se o comportamento estrutural de lajes mistas com vergalhões e, por meio de uma extensão matemática das formulações já existentes para o caso sem armadura, foram propostos critérios de dimensionamento para os estados-limites últimos (momento fletor e cisalhamento longitudinal) e de serviço (deslocamento vertical). Foram realizados ensaios de flexão em doze protótipos de lajes mistas de dimensões usuais, sendo oito sem barras adicionais e quatro com, variando-se as dimensões (altura e vão, conforme Eurocode 4 (2004)) e com quatro taxas de armadura. A partir desses resultados, pôde-se analisar o comportamento estrutural dos protótipos com armadura adicional, os quais apresentaram ductilidade e capacidade consideravelmente maiores que as correspondentes lajes sem as barras. Por fim, também foram validadas as formulações referentes ao cisalhamento longitudinal (extensões do Método m-k e do Método da Interação Parcial) e ao deslocamento vertical, para os casos mais usuais. / Usually, on the design of composite slabs with profiled steel decking, it is tended to standardize as much as possible the thickness of the steel decking, generally because of economic reasons (large-scale production). Nevertheless, in a few cases it must be necessary to specify thicker steel decking, which is not a competitive solution in the Brazilian market. An economic alternative regarding the increase of thickness is the insertion of additional bottom reinforcement, thus, keeping the standard thickness (in general 0.80 mm) and obtaining the steel area increment through rebars. Notwithstanding, since that is an unusual solution, the structural behavior of composite slabs with additional reinforcement, their criteria and design guidelines are not provided in standards and technical manuals: ABNT NBR 8800 (2008) and Eurocode 4 (2004) state that, if there are additional bars to resist positive bending moment, the formulation should be adapted, however they do not present the respective criteria and equating. CSSBI S2-2008 (2008), ANSI/ASCE 3-91 (1992) and ANSI/SDI C-2011 (2011) do not mention the possibility of using additional reinforcement. In this scenario, the structural behavior of composite slabs with rebars was investigated and, through a mathematic extension of the formulation already used to the unreinforced situation, design criteria were proposed for the ultimate (flexure and longitudinal shear) and serviceability (deflection) limit states. In addition, flexure tests were carried out in twelve composite slabs with usual dimensions, eight of those without additional bars and four with, following the recommendations by Eurocode 4 (2004) about the variation of the dimensions (height and span), with the latter having four reinforcement rates. With the results of those tests, the structural behavior of the reinforced prototypes was analysed, which have showed considerably higher ductility and resistance when compared to those with the unreinforced ones. Finally, the formulations for the usual cases related to longitudinal shear (extensions of the m-k Method and the Partial Interaction Method) and deflection were validated.
3

Sobre o comportamento estrutural e o dimensionamento de lajes mistas de aço e concreto com armadura adicional / On the structural behavior and the design of composite slabs with additional reinforcement

Luiz Gustavo Fernandes Grossi 25 October 2016 (has links)
Usualmente, em situações práticas de projeto de lajes mistas, procura-se uniformizar ao máximo a espessura das fôrmas de aço, normalmente por razões econômicas (produção em larga escala). Entretanto, em alguns casos, há a necessidade de se especificarem algumas fôrmas com maior espessura, solução essa pouco competitiva no mercado brasileiro. Uma alternativa economicamente interessante em relação ao aumento de espessura é a inserção de armadura adicional, mantendo-se assim a espessura padrão (em geral 0,80 mm) e obtendo-se aumento da área de aço por meio de vergalhões. No entanto, por se tratar de uma solução inusual, o comportamento estrutural das lajes mistas com armadura adicional e seus critérios e diretrizes de dimensionamento não são previstos em normas e manuais técnicos: a ABNT NBR 8800 (2008, p. 226) e o Eurocode 4 (2004, p. 104) mencionam que, caso haja armadura para resistir ao momento fletor positivo, a formulação apresentada deverá ser adequadamente ajustada, mas não apresentam os respectivos critérios e equacionamentos. O ANSI/ASCE 3-91 (1992), o CSSBI S2-2008 (2008) e o ANSI/SDI C-2011 (2011) não mencionam a possibilidade de armadura adicional. Diante desse cenário, investigou-se o comportamento estrutural de lajes mistas com vergalhões e, por meio de uma extensão matemática das formulações já existentes para o caso sem armadura, foram propostos critérios de dimensionamento para os estados-limites últimos (momento fletor e cisalhamento longitudinal) e de serviço (deslocamento vertical). Foram realizados ensaios de flexão em doze protótipos de lajes mistas de dimensões usuais, sendo oito sem barras adicionais e quatro com, variando-se as dimensões (altura e vão, conforme Eurocode 4 (2004)) e com quatro taxas de armadura. A partir desses resultados, pôde-se analisar o comportamento estrutural dos protótipos com armadura adicional, os quais apresentaram ductilidade e capacidade consideravelmente maiores que as correspondentes lajes sem as barras. Por fim, também foram validadas as formulações referentes ao cisalhamento longitudinal (extensões do Método m-k e do Método da Interação Parcial) e ao deslocamento vertical, para os casos mais usuais. / Usually, on the design of composite slabs with profiled steel decking, it is tended to standardize as much as possible the thickness of the steel decking, generally because of economic reasons (large-scale production). Nevertheless, in a few cases it must be necessary to specify thicker steel decking, which is not a competitive solution in the Brazilian market. An economic alternative regarding the increase of thickness is the insertion of additional bottom reinforcement, thus, keeping the standard thickness (in general 0.80 mm) and obtaining the steel area increment through rebars. Notwithstanding, since that is an unusual solution, the structural behavior of composite slabs with additional reinforcement, their criteria and design guidelines are not provided in standards and technical manuals: ABNT NBR 8800 (2008) and Eurocode 4 (2004) state that, if there are additional bars to resist positive bending moment, the formulation should be adapted, however they do not present the respective criteria and equating. CSSBI S2-2008 (2008), ANSI/ASCE 3-91 (1992) and ANSI/SDI C-2011 (2011) do not mention the possibility of using additional reinforcement. In this scenario, the structural behavior of composite slabs with rebars was investigated and, through a mathematic extension of the formulation already used to the unreinforced situation, design criteria were proposed for the ultimate (flexure and longitudinal shear) and serviceability (deflection) limit states. In addition, flexure tests were carried out in twelve composite slabs with usual dimensions, eight of those without additional bars and four with, following the recommendations by Eurocode 4 (2004) about the variation of the dimensions (height and span), with the latter having four reinforcement rates. With the results of those tests, the structural behavior of the reinforced prototypes was analysed, which have showed considerably higher ductility and resistance when compared to those with the unreinforced ones. Finally, the formulations for the usual cases related to longitudinal shear (extensions of the m-k Method and the Partial Interaction Method) and deflection were validated.
4

Composite Behaviour of Normalweight and Lightweight Concrete Panels With Partially Embedded Light-Gauge Steel Channels

Khan, Akram January 2010 (has links)
This research investigates prefabricated light-gauge steel and concrete panels using reliable and commercially viable shear connectors. An analytical and experimental investigation was undertaken to study the flexural behaviour of light-gauge steel and concrete composite panels under uniform pressure. Normalweight and lightweight concrete panels were fabricated by embedding 16-gauge 41 mm x 203 mm steel channel sections (running parallel to each other) to a depth of 38 mm into a 64 mm thick concrete slab. Push-out tests were also conducted to evaluate the efficiency of three types of shear connection mechanism; natural surface bonding, predrilled holes, and punched holes. Only two types of shear connectors (predrilled holes and punched holes) were used in the full-scale panel specimens. Results show that the predrilled holes and punched holes provide full shear transfer between the steel and concrete. The ultimate load carrying capacity of the lightweight concrete panels exhibited similar behaviour to the normalweight concrete panels. All the panels exhibited good load carrying capacity and ductility, and satisfied the serviceability limit state of deflection. Thus, the proposed panels present a potential for a commercially viable composite floor system for building construction utilizing a maximum span of 2330 mm.
5

The fire performance of restrained polymer-fibre-reinforced concrete composite slabs

Fox, David Christopher Alexander January 2013 (has links)
Composite slab flooring systems for steel-framed buildings consist of a profiled steel deck and a cast in-situ slab. The slab traditionally includes a layer of light gauge steel mesh reinforcement. This mesh is placed near the surface, which controls the early-age cracking caused by concrete drying and shrinkage. The steel mesh also performs a vital structural role at high temperatures. Structural fire tests and numerical investigations over the last 15 years have established that the mesh can provide enhanced fire resistance. A load-carrying mechanism occurs in fire with the mesh acting as a tensile catenary, spanning between perimeter supports. This structural mechanism is currently utilised regularly in the performance-based fire engineering design of steel-framed buildings. In a recent development, this mesh can be removed by using concrete with dispersed polymer fibre reinforcement to form the composite slab. The polymer-fibre-reinforced concrete (PFRC) is poured onto the deck as normal, and the fibres resist early crack development. For developers this technique has several advantages over traditional reinforcing mesh, such as lower steel costs, easier site operations and faster construction. However, to date the fire resistance of such slabs has been demonstrated only to a limited extent. Single element furnace tests with permissible deflection criteria have formed the basis for the fire design of such slabs. But these have not captured the full fire response of a structurally restrained fibre-reinforced slab in a continuous frame. The polymer fibres dispersed throughout the slab have a melting point of 160ºC, and it is unclear how they contribute to overall fire resistance. In particular, there has been no explanation of how such slabs interact with the structural perimeter to maintain robustness at high deflections. This project was designed to investigate the structural fire behaviour of restrained polymer-fibre-reinforced composite slabs. An experimental series of six slab experiments was designed to investigate the effects of fibre reinforcement and boundary restraint. A testing rig capable of recording the actions generated by the heat-affected slab was developed and constructed. Model-scale slab specimens were tested with different reinforcement and perimeter support conditions, to establish the contributions to fire resistance of the polymer fibres and applied structural restraint.
6

EFFECTS OF CONCRETE SLAB ON THE DUCTILITY, STRENGTH AND STIFFNESS OF STEEL MOMENT FRAMES WITH REDUCED BEAM SECTION CONNECTIONS

Poudel, Sanchit 01 December 2015 (has links)
It was not thought that there would be some major flaws in the design of widely used steel moment frames until the Northridge Earthquake hit the California on January 17, 1994. Until then, steel moment frames were practiced as the most ductile system and were used in buildings from few stories to skyscrapers. The heavy devastation from Northridge Earthquake was an alarm for all the people related to the design and construction of such structures and pushed everybody to act fast to find some possible solutions to such never-expected-problems. Following the earthquake, FEMA entered into a cooperative agreement with the SAC joint venture in order to get a transparent picture of the problems in the seismic performance of steel moment frames and to come up with suitable recommendations. The research was specifically done to address the following things: to inspect the earthquake-affected buildings in order to determine the damage incurred in the buildings, to find out ways to repair the damaged buildings and upgrade the performance of existing buildings, and to modify the design of new buildings in order to make them more reliable for seismic performance. Among the various new design suggestions, the Reduced Beam Section (RBS) connection has been one of the most efficient and reliable option for high ductility demands. The purpose of this research was to study the behavior of concrete slabs in the performance of steel moment frames with reduced beam sections based on ductility, strength and stiffness. The slab is an integral part of a building. It is always wiser to consider the slab in order to assess accurately the seismic behavior of a building under the earthquake loading. In this research, two sets of finite element models were analyzed. Each set had one bare steel moment frame and one concrete slab frame which acted as a composite section. The connections were designed using the AISC Seismic Design manual (AISC 2012). The finite element modeling was done using NISA DISPLAY-IV (NISA 2010). All the models, with and without the slab were analyzed under the same boundary conditions and loads. Both non-linear and linear analyses were performed. The results from non-linear analysis were used to compare the ductility and strength whereas linear analysis results were used to compare the stiffness between bare steel and composite frame models.
7

Business centrum / Business Centre

Dežerická, Lucia January 2019 (has links)
This diploma thesis deals with the design and assessment of the two different variants of the steel structure of the business centre. The building is situated in Uherské Hradiště. The construction has several floors and the ground floor in the 1st floor is 32 x 32 m, it gradually extends evenly up in 2nd floor and 5th floor, to the total ground plan dimensions of 48 x 48 m. The building has 8 floors and its maximum construction height is 40 m. The supporting system of the structure is designed from S 355 steel, it consists of steel-concrete beams, dies and columns.
8

Rekonstrukce stávajícího mostu / Reconstruction of the existing bridge structure

Biller, Martin January 2013 (has links)
Master's thesis deals with the reinforcement and expansion of girder bridge (continuous bridge with three spans) across the river Jihlava in Ivančice and reinforcement on the load class A. This is done by using an additional external prestressing cables and composite monolithic slab. Amplification is verified by calculation of load capacity.
9

Nákupní centrum v Brně / Shopping mall in Brno

Brozmanová, Dagmar Unknown Date (has links)
The aim of the diploma thesis is to design and assessment of the steel structure of shopping mall, which is situated in Brno. Three variants were processed, from which one was selected for more detailed processing. Variants have hexagonal floor plan with maximum dimension 60,0 m, four floors and same structural solution. They differ in plan of secondary beams and columns, in floor plan of glass atrium and used cross-sections. Building´s load-bearing structure consists of pin-supported columns, primary beams, secondary beams and purlins. Rigidity of the structure is enshured by system of vertical bracings and in horizontal direction by composite slab. The structure elements are made of steel S355, except secondary beams, which are made of steel S235.
10

KL-träbjälklag i kombination med stålstommar : Teknisk utvärdering och utveckling av lösningar för förband och längre spännvidder

Sidén, Marja January 2017 (has links)
En i dagsläget vanlig byggteknik i Sverige är användandet av en stålstomme i kombination medprefabricerade betonghåldäck. Detta arbete grundar sig på frågeställningen om KL-träbjälklag skullekunna vara ett reellt alternativ till betongbjälklag i en sådan konstruktion, i kombination medhattbalkar. Som ett första steg skisserades en typkonstruktion för att ha en väl definierad utgångspunkt för enanalys. Utgångspunkten för denna typkonstruktion var främst en studie av två tidigare konstruktioner,konstruerade med stålstomme med hattbalkar och håldäcksbjälklag. Litteraturstudien fokuserade påbakomliggande teorier i relation till bjälklagets funktion i konstruktionen. Ett antal områdendefinierades som utgångspunkt för en teknisk utvärdering. Dessa områden var spännvidder,dimensionering i brottgränstillståndet, dimensionering i bruksgränstillståndet, knutpunkter,dimensionering för olyckslaster, akustik och byggbarhet. Utgående från ovanstående områdenutvärderades så tekniska förutsättningar för användandet av KL-träbjälklag i den aktuellakonstruktionstypen. Det konstaterades att det på många områden finns väl fungerande lösningar ochatt det finns många positiva aspekter med ett lätt och lättmonterat KL-träbjälklag. De problemområdensom hittats kan sammanfattas som: 1. Begränsad spännvidd 2. Ökade horisontella deformationer i bjälklaget 3. Beräkning av svängningar med hänsyn till upplag på stålbalkar 4. Förband mellan bjälklag och hattbalkar 5. Akustisk dimensionering Två av dessa områden valdes för vidare analys; förband mellan bjälklag och hattbalkar samt denbegränsade spännvidden. För förbandet utvecklades en lösning med en klack på hattbalkens fläns ikombination med en slits i KL-träskivan som enkelt ska kunna hakas på vid montage. För att ta krafterlängs balkens längd måste dock lösningen sedan kompletteras med ett skruvförband genombalkflänsen. Förhoppningen är att en enklare lösning för att ta dessa förhållandevis små krafter skakunna utvecklas som komplement till det primära förbandet med klack och slits. Handberäkningarutfördes för det utvecklade förbandet och det konstaterades att det är möjligt att utforma ett sådantförband, med rimliga dimensioner, för alla verkande laster. Som den sista delen av arbetet studerades lösningar för att kunna uppnå längre spännvidder, för ettplattbjälklag är spännvidden begränsad till något mindre än 7,7m. Olika typer av samverkansbjälklagstuderades och det konstaterades att samverkan med ett prefabricerat betongbjälklag med en limmadförbindelse skulle kunna vara en lämplig lösning. Limmade förbindelser studerades så mer ingåendeoch det konstaterades att en limmad förbindelse mellan trä och prefabricerad betong medför storstyrka och styvhet. Upp mot 100% samverkan har observerats för samverkansbjälklag med denna typav förbindelse. En osäkerhetsfaktor är dock långtidseffekter, där fler studier behöver hittas ellerutföras för att få en större kunskap på området. Handberäkningar utfördes enligt teorin i SS-EN 1995-1-1 på två typer av samverkansbjälklag med ett antal olika dimensioner. I beräkningarna medräknades100% samverkansgrad. Det konstaterades att 9m spännvidd skulle kunna uppnås med en kombinationav KL-trä och betong, medan 12m spännvidd kan uppnås med hjälp av mellanliggande träreglar. Andraberäkningsmodeller för svängningar där egenfrekvensen inte är den begränsande faktorn skulle kunna leda till bättre resultat för denna typ av samverkansbjälklag. / A currently common building technology in Sweden is the use of a steel structure in combination withprefabricated HD/F concrete slabs. This work is based on the issue of whether CLT slabs could be asuitable alternative to concrete slabs in such a structure, in combination with the type of weldedplated beams that are often called hat beams. As a first step a type-structure was sketched to have a well-defined starting point for an analyze. Thebasis for this structure was mainly a study of two designs constructed with steel structures composedof hat beams and HD/F slabs. The literature study was focused on underlying theories in relation to theslabs function in the structure. A number of areas were defined as a basis for an evaluation of thebuilding type. These areas where spans, design in the ultimate limit state, design in the serviceabilitylimit state, joints, design for accidental actions, acoustics and constructability. Based on the above,technical conditions for the use of CLT slabs in the building type in question were evaluated. It wasfound that in many areas there were working solutions, and that there are many positive aspectsrelated to the use of a light and easily mounted CLT slab. The issues that were found can be concluded as: 1. Limited span lengths 2. An increase of horizontal deformations in the slab 3. Calculations of vibrations with respect to the flexible support 4. Joints between slabs and hat beams 5. Acoustic design Two of these issues were chosen for further analysis: joints between slabs and beams and the limitedspan length. A solution was developed for the joint, composed of a heel on the flange of the steelbeam in combination with a slit in the CLT slab. The joint is supposedly easy to mount during assembly.To be able to handle the forces along the length of the beam the solution must however becomplemented with a secondary screw joint through the flange of the beam. The hope is that a simplersolution to handle these relatively small forces can be developed, as complement to the primary jointmade up of the heel and slit. Calculations were performed by hand for the developed joint and it wasfound that it is possible to design such a joint, with reasonable dimensions, for all the acting loads. As the last part solutions to achieve longer spans were studied, for a flat CLT slab the span length islimited to somewhat less than 7,7m. Different types of composite slabs were studied and it was notedthat a composite with a prefabricated concrete slab and a glued connection could be a suitablesolution. Glued connections were then studied more closely, and I was found that a glued connectionbetween wood and prefabricated concrete entails great strength and rigidity. About 100% unitedaction has been observed for this type of connection. An uncertain factor is however long-term effectswhere further studies need to be found or performed to achieve more knowledge. Hand calculationswere performed using the theory in SS-EN 1995-1-1 on two types of composite slabs for a couple ofdifferent dimensions. In the calculations 100% united action was used. It was found that 9m span couldbe achieved with the combined action of CLT and concrete, while 12m could be achieved using woodenstuds for spacing. Other theories for the calculations where the natural frequency isn’t the limiting factor could lead to better results for this kind of composite slabs.

Page generated in 0.0895 seconds