• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compressive sampling meets seismic imaging

Herrmann, Felix J. January 2007 (has links)
No description available.
2

Seismology meets compressive sampling

Herrmann, Felix J. January 2007 (has links)
Presented at Cyber-Enabled Discovery and Innovation: Knowledge Extraction as a success story lecture. See for more detail https://www.ipam.ucla.edu/programs/cdi2007/
3

Compressed wavefield extrapolation with curvelets

Lin, Tim T. Y., Herrmann, Felix J. January 2007 (has links)
An \emph {explicit} algorithm for the extrapolation of one-way wavefields is proposed which combines recent developments in information theory and theoretical signal processing with the physics of wave propagation. Because of excessive memory requirements, explicit formulations for wave propagation have proven to be a challenge in {3-D}. By using ideas from ``\emph{compressed sensing}'', we are able to formulate the (inverse) wavefield extrapolation problem on small subsets of the data volume{,} thereby reducing the size of the operators. According {to} compressed sensing theory, signals can successfully be recovered from an imcomplete set of measurements when the measurement basis is \emph{incoherent} with the representation in which the wavefield is sparse. In this new approach, the eigenfunctions of the Helmholtz operator are recognized as a basis that is incoherent with curvelets that are known to compress seismic wavefields. By casting the wavefield extrapolation problem in this framework, wavefields can successfully be extrapolated in the modal domain via a computationally cheaper operatoion. A proof of principle for the ``compressed sensing'' method is given for wavefield extrapolation in {2-D}. The results show that our method is stable and produces identical results compared to the direct application of the full extrapolation operator.

Page generated in 0.1389 seconds