• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Explorations of iron-iron hydrogenase active site models by experiment and theory

Tye, Jesse Wayne 15 May 2009 (has links)
This dissertation describes computational and experimental studies of synthetic complexes that model the active site of the iron-iron hydrogenase [FeFe]H2ase enzyme. Simple dinuclear iron dithiolate complexes act as functional models of the ironiron hydrogenase enzyme by catalyzing isotopic exchange in D2/H2O mixtures. Density Functional Theory (DFT) calculations and new experiments have been performed that suggest reasonable mechanistic explanations for this reactivity. Evidence for the existence of an acetone derivative of the di-iron complex, as suggested by theory, is presented. Bis-phosphine substituted dinuclear iron dithiolate complexes react with the electrophilic species, H+ and Et+ (Et+ = CH3CH2 +) with differing regioselectivity; H+ reacts to form a 3c-2eâ Fe-H-Fe bond, while Et+ reacts to form a new C-S bond. The instability of a bridging ethyl complex is attributed to the inability of the ethyl group, in contrast to a hydride, to form a stable 3c-2eâ bond with the two iron centers. Gas-phase density functional theory calculations are used to predict the solutionphase infrared spectra for a series of CO and CN-containing dinuclear iron complexes dithiolate. It is shown that simple linear scaling of the computed C-O and C-N stretching frequencies yields accurate predictions of the experimentally determined ν(CO) and ν(CN) values. An N-heterocyclic carbene containing [FeFe]H2ase model complex, whose X-ray structure displays an apical carbene, is shown to undergo an unexpected simultaneous two-electron reduction. DFT shows, in addition to a one-electron Fe-Fe reduction, that the aryl-substituted N-heterocyclic carbene can accept a second electron more readily than the Fe-Fe manifold. The juxtaposition of these two one-electron reductions resembles the [FeFe]H2ase active site with an FeFe di-iron unit joined to the electroactive 4Fe4S cluster. Simple synthetic di-iron dithiolate complexes synthesized to date fail to reproduce the precise orientation of the diatomic ligands about the iron centers that is observed in the molecular structure of the reduced form of the enzyme active site. Herein, DFT computations are used for the rational design of synthetic complexes as accurate structural models of the reduced form of the enzyme active site.
2

Advances in the theory of electrochemical methods

Streeter, Ian January 2008 (has links)
This thesis is concerned with dynamic electrochemistry experiments in which faradaic processes are driven by the application of potential to an electrode immersed in an electrolyte solution. In particular, experimental methods are considered which could be used to study electrochemical systems in a more informative way if the processes occurring at the electrode were better understood. The work develops the theoretical models which describe these experiments, and details the approximations made in each model and the conditions under which they are appropriate. Numerical simulations are reported which demonstrate how the models can be used to infer quantitative details of chemical behaviour from experimentally recorded data. The first system studied in detail is linear sweep voltammetry at a microband electrode array. The diffusional behaviour of an electroactive species is shown to depend on the configuration of the microband array and on the potential scan rate used. Details are given on how experimental conditions can be optimised for the study of electrochemical systems. The next area of work develops the theory of nanoparticle-modified electrodes. Experiments are considered in which an electron transfer reaction is catalysed only at the site of the nanoparticles, whilst the supporting planar electrode remains electrochemically inert. Numerical simulations show how the current measured at these modified electrodes depends on the size and shape of the particles, on the distribution of the particles on the electrode surface, and on the timescale of the experiment. The final theme of work is on electrochemical experiments in poorly conducting solutions. A theoretical model is developed which takes into account the effects of an electric field on the mass transport of electroactive species and on the charge transfer kinetics at the electrode. The model is then used to rationalise the unusual current behaviour that is observed in the anodic stripping of thallium from an amalgam.
3

Computational electrochemistry

Belding, Stephen Richard January 2012 (has links)
Electrochemistry is the science of electron transfer. The subject is of great importance and appeal because detailed information can be obtained using relatively simple experimental techniques. In general, the raw data is sufficiently complicated to preclude direct interpretation, yet is readily rationalised using numerical procedures. Computational analysis is therefore central to electrochemistry and is the main topic of this thesis. Chapters 1 and 2 provide an introductory account to electrochemistry and numerical analysis respectively. Chapter 1 explains the origin of the potential difference and describes its relevance to the thermodynamic and kinetic properties of a redox process. Voltammetry is introduced as an experimental means of studying electrode dynamics. Chapter 2 explains the numerical methods used in later chapters. Chapter 3 presents a review of the use of nanoparticles in electrochemistry. Chapter 4 presents the simulation of a random array of spherical nanoparticles. Conclusions obtained theoretically are experimentally confirmed using the Cr<sup>3+</sup>/Cr<sup>2+</sup> redox couple on a random array of silver nanoparticles. Chapter 5 presents an investigation into the concentration of supporting electrolyte required to make a voltammetric experiment quantitatively diffusional. This study looks at a wide range of experimental conditions. Chapter 6 presents an investigation into the deliberate addition of insufficient supporting electrolyte to an electrochemical experiment. It is shown that this technique can be used to fully study a stepwise two electron transfer. Conclusions obtained theoretically are experimentally confirmed using the reduction of anthracene in acetonitrile. Chapter 7 presents a new method for simulating voltammetry at disc shaped electrodes in the presence of insufficient supporting electrolyte. It is shown that, under certain conditions, the results obtained from this complicated simulation can be quantitatively obtained by means of a much simpler ‘hemispherical approximation’. Conclusions obtained theoretically are experimentally confirmed using the hexammineruthenium ([Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup>/[Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+</sup>) and hexachloroiridate ([IrCl<sub>6</sub>]<sup>2−</sup>/[IrCl<sub>6</sub>]<sup>3−</sup>) redox couples. Chapter 8 presents an investigation into the voltammetry of stepwise two electron processes using ionic liquids as solvents. It is shown that these solvents can be used to fully study a stepwise two electron transfer. Conclusions obtained theoretically are experimentally confirmed using the oxidation of N,N-dimethyl-p-phenylenediamine in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([C<sub>4</sub> mim][BF<sub>4</sub>]). The work presented in this thesis has been published as 7 scientific papers.

Page generated in 0.5514 seconds