• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deploying Affect-Inspired Mechanisms to Enhance Agent Decision-Making and Communication

Antos, Dimitrios 20 December 2012 (has links)
Computer agents are required to make appropriate decisions quickly and efficiently. As the environments in which they act become increasingly complex, efficient decision-making becomes significantly more challenging. This thesis examines the positive ways in which human emotions influence people’s ability to make good decisions in complex, uncertain contexts, and develops computational analogues of these beneficial functions, demonstrating their usefulness in agent decision-making and communication. For decision-making by a single agent in large-scale environments with stochasticity and high uncertainty, the thesis presents GRUE (Goal Re-prioritization Using Emotion), a decision-making technique that deploys emotion-inspired computational operators to dynamically re-prioritize the agent’s goals. In two complex domains, GRUE is shown to result in improved agent performance over many existing techniques. Agents working in groups benefit from communicating and sharing information that would otherwise be unobservable. The thesis defines an affective signaling mechanism, inspired by the beneficial communicative functions of human emotion, that increases coordination. In two studies, agents using the mechanism are shown to make faster and more accurate inferences than agents that do not signal, resulting in improved performance. Moreover, affective signals confer performance increases equivalent to those achieved by broadcasting agents’ entire private state information. Emotions are also useful signals in agents’ interactions with people, influencing people’s perceptions of them. A computer-human negotiation study is presented, in which virtual agents expressed emotion. Agents whose emotion expressions matched their negotiation strategy were perceived as more trustworthy, and they were more likely to be selected for future interactions. In addition, to address similar limitations in strategic environments, this thesis uses the theory of reasoning patters in complex game-theoretic settings. An algorithm is presented that speeds up equilibrium computation in certain classes of games. For Bayesian games, with and without a common prior, the thesis also discusses a novel graphical formalism that allows agents’ possibly inconsistent beliefs to be succinctly represented, and for reasoning patterns to be defined in such games. Finally, the thesis presents a technique for generating advice from a game’s reasoning patterns for human decision-makers, and demonstrates empirically that such advice helps people make better decisions in a complex game. / Engineering and Applied Sciences
2

Bayesian Generative Modeling of Complex Dynamical Systems

Guan, Jinyan January 2016 (has links)
This dissertation presents a Bayesian generative modeling approach for complex dynamical systems for emotion-interaction patterns within multivariate data collected in social psychology studies. While dynamical models have been used by social psychologists to study complex psychological and behavior patterns in recent years, most of these studies have been limited by using regression methods to fit the model parameters from noisy observations. These regression methods mostly rely on the estimates of the derivatives from the noisy observation, thus easily result in overfitting and fail to predict future outcomes. A Bayesian generative model solves the problem by integrating the prior knowledge of where the data comes from with the observed data through posterior distributions. It allows the development of theoretical ideas and mathematical models to be independent of the inference concerns. Besides, Bayesian generative statistical modeling allows evaluation of the model based on its predictive power instead of the model residual error reduction in regression methods to prevent overfitting in social psychology data analysis. In the proposed Bayesian generative modeling approach, this dissertation uses the State Space Model (SSM) to model the dynamics of emotion interactions. Specifically, it tests the approach in a class of psychological models aimed at explaining the emotional dynamics of interacting couples in committed relationships. The latent states of the SSM are composed of continuous real numbers that represent the level of the true emotional states of both partners. One can obtain the latent states at all subsequent time points by evolving a differential equation (typically a coupled linear oscillator (CLO)) forward in time with some known initial state at the starting time. The multivariate observed states include self-reported emotional experiences and physiological measurements of both partners during the interactions. To test whether well-being factors, such as body weight, can help to predict emotion-interaction patterns, we construct functions that determine the prior distributions of the CLO parameters of individual couples based on existing emotion theories. Besides, we allow a single latent state to generate multivariate observations and learn the group-shared coefficients that specify the relationship between the latent states and the multivariate observations. Furthermore, we model the nonlinearity of the emotional interaction by allowing smooth changes (drift) in the model parameters. By restricting the stochasticity to the parameter level, the proposed approach models the dynamics in longer periods of social interactions assuming that the interaction dynamics slowly and smoothly vary over time. The proposed approach achieves this by applying Gaussian Process (GP) priors with smooth covariance functions to the CLO parameters. Also, we propose to model the emotion regulation patterns as clusters of the dynamical parameters. To infer the parameters of the proposed Bayesian generative model from noisy experimental data, we develop a Gibbs sampler to learn the parameters of the patterns using a set of training couples. To evaluate the fitted model, we develop a multi-level cross-validation procedure for learning the group-shared parameters and distributions from training data and testing the learned models on held-out testing data. During testing, we use the learned shared model parameters to fit the individual CLO parameters to the first 80% of the time points of the testing data by Monte Carlo sampling and then predict the states of the last 20% of the time points. By evaluating models with cross-validation, one can estimate whether complex models are overfitted to noisy observations and fail to generalize to unseen data. I test our approach on both synthetic data that was generated by the generative model and real data that was collected in multiple social psychology experiments. The proposed approach has the potential to model other complex behavior since the generative model is not restricted to the forms of the underlying dynamics.

Page generated in 0.172 seconds