1 |
A computer and experimental simulation of Stirling cycle machinesBerchowitz, David M 04 October 2011 (has links)
MSc, Faculty of Engineering, University of the Witwatersrand, 1978
|
2 |
識別性検査A‐1001の「関係判断力・応用力」領域および「記憶」領域の適応型テスト化の試み野口, 裕之, Noguchi, Hiroyuki 26 December 1997 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
|
3 |
Charting the retention of tasks learned in synthetic virtual environmentsFinkelstein, Neal M. 01 January 1999 (has links)
No description available.
|
4 |
THE EFFECTS OF COMPUTER SIMULATION ON REDUCING THE INCIDENCE OF MEDICAL ERRORS ASSOCIATED WITH MASS DISTRIBUTION OF CHEMOPROPHYLAXIS AS A RESULT OF A BIOTERRORISM EVENTPatrick Raymond Glass (8071232) 06 December 2019 (has links)
The objective of research is to develop a computer simulation modeltoprovide a means to effectively and efficiently reduce medication errors associated with points of distribution sitesby identifying and manipulating screeners with a high probability of generating errors.Points of distribution sites are used to rapidly distribute chemoprophylaxis to a large population in response to a pandemic event or a bioterrorism attack. Because of the nature of therapid response, points of distribution sites require the use of peer-trained helpers who volunteer their services.The implications are that peer-trained helperscould have a variety of experience or education levels. Thesefactors increase the risk of medical errors. Reducing medical errors is accomplished through changing the means in which healthcare providers are trained and focusing on a team approach to healthcare delivery. Computer simulations have been used in the past to identify sources of inefficiency and potential of error. Data for the model werecollected over the course of two semesters. Of the 349 data points collected from the first semester, only 137 data points were usable for the purposes of modelbuilding. When the experiment was conducted again for the second semester, similar results werefound. The control simulation was run 20 times with each screener generating errors with a probability of 0.101 following a Bernoulli distribution. The variable simulation was run 30 times with each screener generating the same probability of errors; however, the researcher identified the screeners generating the errors and immediately stopped them from processing additional agents once they reached five errors. An ANOVA was conducted on the percent errors generated from each simulation run. The results of the ANOVA showedsignificant difference between individuals within the groups. A simulation model wasbuilttoreflect the differences in medical error rates between screeners. By comparing the results of the simulation as the screeners are manipulated in the system, the model can be used to show how medical errors can be reduced in points of distribution sites
|
5 |
Using a computer negotiations simulation to improve the writing of English language learners in a specially designed academic instruction in English world history classWilson, Craig Steven 01 January 1998 (has links)
No description available.
|
Page generated in 0.1443 seconds