1 |
UNSUPERVISED AND SEMI-SUPERVISED LEARNING IN AUTOMATIC INDUSTRIAL IMAGE INSPECTIONWeitao Tang (12462516) 27 April 2022 (has links)
<p>It has been widely studied in industry production environment to apply computer version onX-ray images for automatic visual inspection. Traditional methods embrace image processingtechniques and require custom design for each product. Although the accuracy of this approachvaries, it often fall short to meet the expectations in the production environment. Recently, deeplearning algorithms have significantly promoted the capability of computer vision in various tasksand provided new prospects for the automatic inspection system. Numerous studies appliedsupervised deep learning to inspect industrial images and reported promising results. However,the methods used in these studies are often supervised, which requires heavy manual annotation.It is therefore not realistic in many manufacturing scenarios because products are constantlyupdated. Data collection, annotation and algorithm training can only be performed after thecompletion of the manufacturing process, causing a significant delay in training the models andestablishing the inspection system. This research was aimed to tackle the problem usingunsupervised and semi-supervised methods so that these computer vision-based machine learningapproaches can be rapidly deployed in real-life scenarios. More specifically, this dissertationproposed an unsupervised approach and a semi-supervised deep learning method to identifydefective products from industrial inspection images. The proposed methods were evaluated onseveral open source inspection datasets and a dataset of X-Ray images obtained from a die castingplant. The results demonstrated that the proposed approach achieved better results than otherstate-of-the-art techniques on several occasions.</p>
|
2 |
Digital Image Processing And Machine Learning Research: Digital Color Halftoning, Printed Image Artifact Detection And Quality Assessment, And Image Denoising.Yi Yang (12481647) 29 April 2022 (has links)
<p>To begin with, we describe a project in which three screens for Cyan, Magenta, and Yellow colorants were designed jointly using the Direct Binary Search algorithm (DBS). The screen set generated by the algorithm can be used to halftone color images easily and quickly. The halftoning results demonstrate that by utilizing the screen sets, it is possible to obtain high-quality color halftone images while significantly reducing computational complexity.</p>
<p>Our next research focuses on defect detection and quality assessment of printed images. We measure and analyze macro-uniformity, banding, and color plane misregistration. For these three defects, we designed different pipelines for them and developed a series of digital image processing and computer vision algorithms for the purpose of quantifying and evaluating these printed image defects. Additionally, we conduct a human psychophysical experiment to collect perceptual assessments and use machine learning approaches to predict image quality scores based on human vision.</p>
<p>We study modern deep convolutional neural networks for image denoising and propose a network designed for AWGN image denoising. </p>
<p>Our network removes the bias at each layer to achieve the benefits of scaling invariant network; additionally, it implements a mix loss function to boost performance. We train and evaluate our denoising results using PSNR, SSIM, and LPIPS, and demonstrate that our results achieve impressive performance on both objective and subjective IQA assessments.</p>
|
3 |
An Effective Framework of Autonomous Driving by Sensing Road/motion ProfilesZheyuan Wang (11715263) 22 November 2021 (has links)
<div>With more and more videos taken from dash cams on thousands of cars, retrieving these videos and searching for important information is a daunting task. The purpose of this work is to mine some key road and vehicle motion attributes in a large-scale driving video data set for traffic analysis, sensing algorithm development and autonomous driving test benchmarks. Current sensing and control of autonomous cars based on full-view identification makes it difficult to maintain a high-frequency with a fast-moving vehicle, since computation is increasingly used to cope with driving environment changes.</div><div><br></div><div>A big challenge in video data mining is how to deal with huge amounts of data. We use a compact representation called the road profile system to visualize the road environment in long 2D images. It reduces the data from each frame of image to one line, thereby compressing the video clip to the image. This data dimensionality reduction method has several advantages: First, the data size is greatly compressed. The data is compressed from a video to an image, and each frame in the video is compressed into a line. The data size is compressed hundreds of times. While the size and dimensionality of the data has been compressed greatly, the useful information in the driving video is still completely preserved, and motion information is even better represented more intuitively. Because of the data and dimensionality reduction, the identification algorithm computational efficiency is higher than the full-view identification method, and it makes the real-time identification on road is possible. Second, the data is easier to be visualized, because the data is reduced in dimensionality, and the three-dimensional video data is compressed into two-dimensional data, the reduction is more conducive to the visualization and mutual comparison of the data. Third, continuously changing attributes are easier to show and be captured. Due to the more convenient visualization of two-dimensional data, the position, color and size of the same object within a few frames will be easier to compare and capture. At the same time, in many cases, the trouble caused by tracking and matching can be eliminated. Based on the road profile system, there are three tasks in autonomous driving are achieved using the road profile images.</div><div><br></div><div>The first application is road edge detection under different weather and appearance for road following in autonomous driving to capture the road profile image and linearity profile image in the road profile system. This work uses naturalistic driving video data mining to study the appearance of roads, which covers large-scale road data and changes. This work excavated a large number of naturalistic driving video sets to sample the light-sensitive area for color feature distribution. The effective road contour image is extracted from the long-time driving video, thereby greatly reducing the amount of video data. Then, the weather and lighting type can be identified. For each weather and lighting condition obvious features are I identified at the edge of the road to distinguish the road edge. </div><div><br></div><div>The second application is detecting vehicle interactions in driving videos via motion profile images to capture the motion profile image in the road profile system. This work uses visual actions recorded in driving videos taken by a dashboard camera to identify this interaction. The motion profile images of the video are filtered at key locations, thereby reducing the complexity of object detection, depth sensing, target tracking and motion estimation. The purpose of this reduction is for decision making of vehicle actions such as lane changing, vehicle following, and cut-in handling.</div><div><br></div><div>The third application is motion planning based on vehicle interactions and driving video. Taking note of the fact that a car travels in a straight line, we simply identify a few sample lines in the view to constantly scan the road, vehicles, and environment, generating a portion of the entire video data. Without using redundant data processing, we performed semantic segmentation to streaming road profile images. We plan the vehicle's path/motion using the smallest data set possible that contains all necessary information for driving.</div><div><br></div><div>The results are obtained efficiently, and the accuracy is acceptable. The results can be used for driving video mining, traffic analysis, driver behavior understanding, etc.</div>
|
Page generated in 0.0928 seconds