Spelling suggestions: "subject:"concentric""
1 |
Use of Cast Modular Components for Concentrically Braced Steel FramesFederico, Giovanni January 2012 (has links)
Cast modular components have been under development for earthquake resistant steel structures. These concepts take advantage of the versatility in geometry afforded with the casting process to create components specifically configured for ductile behavior. Two systems were developed as part of this dissertation research: (1) the Cast Modular Ductile Bracing system (CMDB); (2) the Floating Brace system (FB).The CMDB system makes use of cast components introduced at the ends and the center of the brace to produce a special bracing detail with reliable strength, stiffness and deformation capacity. The system takes advantage of the versatility in geometry offered by the casting process to create configurations that eliminate non-ductile failure modes in favor of stable inelastic deformation capacity. This thesis presents analytical research performed to determine the buckling strength and buckling direction of the bracing element based on the geometries of the cast components. Limiting geometries are determined for the cast components to control the buckling direction. Design formulas for buckling strength are proposed. The Floating Brace system is a new lateral bracing concept developed for steel special concentric braced frames. The concept uses a set of special plate details at the end of the brace to create a stiff, strong and ductile lateral bracing system. The plates are arranged such that some provide direct axial support for high initial stiffness and elimination of fatigue issues for daily service wind loads. The remaining plates are oriented transverse to the brace and thus provide ductile bending response for the rare earthquake event, in which the axial plates become sacrificial. The main bracing member and cast pieces remain elastic or nearly elastic. Thus, following the seismic event, the plates can be replaced. In this thesis, analytical studies using nonlinear finite element analysis are performed to determine the optimum: (a) relative strength of the end connection to the brace; and (b) ratio of strength between axial and transverse plates. Design equations are provided. Prototypes for each concept were developed. Castings were created. Large scale laboratory physical testing was performed as experimental verification (proof of concept) for the two systems.
|
2 |
Design and Testing of a Replaceable Connection for Steel Concentrically Braced FramesStevens, Daniel January 2017 (has links)
There is increasing demand, from both engineers and their clients, for structures that can be rapidly returned to occupancy following an earthquake, while also maintaining or reducing initial costs. One possible way towards this goal is to ensure that seismic damage occurs only within elements that can be removed and replaced following a damaging earthquake. For concentrically braced frames that use hollow structural sections, the current design practice requires field welding of the brace to the gusset in a way that causes the brace to buckle out-of-plane. In the event of a damaging earthquake, the out-of-plane brace buckling may damage both the gusset plate and also any adjacent exterior cladding. The plate cannot be easily replaced, resulting in expensive and time-consuming repairs, and the damaged cladding could endanger the lives of people evacuating the building and of other pedestrians.
Through multiple design iterations, a new steel concentrically braced frame connection type was developed that can be bolted into place and that confines damage to replaceable components. The proposed connection is expected to result in reduced erection costs and be easier to repair following a major earthquake. Moreover, the new connection causes buckling to occur in-plane, preventing dangerous damage to the cladding.
Large scale experimental testing on two variations of the new connection was performed. The cyclic, uniaxial testing of a brace with the new connection demonstrated the connection’s ability to behave in a desirable manner, with tensile yielding, brace buckling and connection rotation occurring during the expected drift levels associated with earthquake loading. A nonlinear finite element model of a brace with the new connection was developed and discussed. The finite element model was able to replicate the results of the experiment and will allow for further research and development of the new connection. The new connection shows promise as a replaceable connection for the seismic design of concentrically braced frames. / Thesis / Master of Applied Science (MASc) / Earthquakes can cause major, devastating damage to city structures. The cost of repairs and the time needed to make those repairs can be crippling, to the point where it is easier to tear down the structures than properly repair them. Designers and engineers need improved ways to design these structures to be more easily repaired, without driving up the initial cost of the structure.
This research developed, tested and modelled a new, replaceable connection for earthquake resistant braces. The new connection is easier to install, easier to replace and provides added safety when compared to traditional designs.
|
3 |
Natural Periods Of Braced Steel Frames Designed To Ec8Gunaydin, Egemen 01 February 2012 (has links) (PDF)
A two-phase study was undertaken to investigate the fundamental period of concentrically braced steel frames (CBFs) designed according to Eurocode 8. In the first phase, typical office buildings were studied by conducting two types of designs which are called as iterative and non-iterative. Non-iterative design is composed of obtaining final period by designing the structure with lower bound expression in Eurocode 8 while iterative design is similar to the non-iterative one but an updating of periods was considered in order to converge assumed and final periods. Different overstrength provisions are considered in the study. Lower bound expression in Eurocode 8 results in shorter periods which indicates that this expression can be safely utilized. The lower bound represented by Tremblay (2005) is also admissible except for some cases including shorter periods. In the second phase, a simple expression is derived for estimating the design base acceleration for braced frames proportioned according to Eurocode 8. This method requires inelastic top story drift values which were obtained from structures designed in the first phase using iterative method. These drifts were represented by simple expressions utilizing data fitting techniques. The method gives suitable first order estimate for the design base acceleration.
|
4 |
Evaluation of Strength Reduction Factor for Concentrically Braced Frames Based on Nonlinear Single Degree-of-Freedom SystemsSlein, Ryan Michael 01 March 2016 (has links)
Strength Reduction Factor (R-Factor), often referred to as Response Modification Factor, is commonly used in the design of lateral force resisting systems under seismic loading. R-Factors allow for a reduction in design base shear demands, leading to more economical designs. The reduction of strength is remedied with ductile behavior in members of proper detailing. Modern seismic codes and provisions recommend R-Factors for many types of lateral force resisting systems. However these factors are independent of the system fundamental frequency and many other important system properties, resulting in factors that may result in an unfavorable seismic response. To evaluate the validity of prescribed R-Factors an extensive analytical parameter study was conducted using a FEM single degree-of-freedom Concentrically Braced Frame (CBF) under incremental dynamic analysis over a suite of ground motions. Parameters of the study include brace slenderness, fundamental frequency, increment resolution, FEM mesh refinement, effects of leaning columns, and effects of low-cycle fatigue. Results suggest that R-Factor can vary drastically for CBF systems with differing properties.
|
5 |
Simulation of Dynamic Impact of Self-Centering Concentrically-Braced Frames using LS-DYNA 971Blin-Bellomi, Lucie M. 02 August 2012 (has links)
No description available.
|
6 |
Mid-length lateral deflection of cyclically-loaded bracesSheehan, Therese, Chan, T.M., Lam, Dennis 06 1900 (has links)
No / This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness ( ) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility. / TATA Steel
|
7 |
Analytical and Experimental Study of Concentrically Braced Frames with Zipper StrutsYang, Chuang-Sheng 20 November 2006 (has links)
This thesis investigates the performance of concentrically braced zipper frames through complementary experimental and numerical simulation approaches and proposes a design methodology for an innovative bracing scheme labeled as the suspended zipper frame. The suspended zipper frame intends to ensure that the top-story hat truss remains elastic, resulting in very ductile behavior of the structure. In the first part of the work, a three-story prototype frame was designed based on a preliminary design method. Three tests were conducted on one-third scale models of this prototype to verify the design procedure and assess the system performance under very different load histories. Comparisons of the results between analyses and experiments validated the partial-height zipper mechanism envisioned, and led to refinements of the design procedure and establishment of appropriate design details for these frames. The design and performance of this structural system are illustrated with three-, nine-, and twenty-story buildings designed for the same masses as those used in the SAC studies for the Los Angeles area. The proposed design strategy results in suspended zipper frames having more ductile behavior and higher strength than typical zipper frames. In addition, the suspended zipper frames also appear to reduce the tendency of chevron-braced frames to form soft stories and to improve seismic performance without having to use overly stiff beams. Finally, an explanation of the design philosophy as well as code language format of the design procedure is given.
|
8 |
Buckling restrained braced frames as a seismic force resisting systemFuqua, Brandon W. January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / The hazards of seismic activity on building structures require that engineers continually look for new and better methods of resisting seismic forces. Buckling restrained braced frames (BRBF) are a relatively new lateral force resisting system developed to resist highly unpredictable seismic forces in a very predictable way. Generally, structures with a more ductile lateral force resisting system perform better in resisting high seismic forces than systems with more rigid, brittle elements. The BRBF is a more ductile frame choice than special concentrically braced frames (SCBF). The ductility is gained through brace yielding in both compression and tension. The balanced hysteretic curve this produces provides consistent brace behavior under extreme seismic loads. However regular use of the BRB is largely limited to Japan where the brace type was first designed.
The wide acceptance of buckling restrained braced frames requires the system to become easily designable, perform predictably, and common to engineers. This report explains the design process to help increase knowledge of the design and background. This report also details a comparison of a BRBF to a SCBF to give familiarity and promote confidence in the system.
The design process of the BRBF is described in detail with design calculations of an example frame. The design process is from the AISC Seismic Provisions with the seismic loads calculated according to ASCE 7 equivalent lateral force procedure. The final members sizes of the BRBF and SCBF are compared based on forces and members selected. The results of the parametric study are discussed in detail.
|
9 |
Parametric Study of Self-Centering Concentrically-Braced Frames with Friction-Based Energy DissipationJeffers, Brandon 15 May 2012 (has links)
No description available.
|
10 |
SYSTEM-LEVEL SEISMIC PERFORMANCE OF CONCENTRICALLY BRACED FRAMES WITH REPLACEABLE BRACE MODULESMohsenzadeh, Vahid January 2020 (has links)
Concentrically braced frames with replaceable brace modules (RBMs) have the potential of improving the constructability of braced frames, mitigating the structural damage during earthquakes, and minimizing the time of post-earthquake repairs. To fill the gaps between the component-level performance of RBMs and system-level behaviour of SCBFs with RBMs, this thesis focused on the overall system-level seismic performance of SCBFs with RBMs in three steps. Firstly, the effects of beam-column connection fixity on the behaviour of three SCBFs were investigated to determine what level of fixity, if any, is required to ensure adequate collapse capacity of an SCBF. Secondly, the effects of column design parameters on braced frame seismic performance were investigated, where two different brace-to-frame connections were considered: 1) conventional gusset plate connection and 2) the newly proposed connection detail with RBMs. Detailed numerical modelling was undertaken to develop improved provisions for designing columns in SCBFs. Finally, a large-scale experimental program was conducted to evaluate the seismic performance of braced frames with initial and replaced RBMs where realistic boundary conditions were provided. Three different beam-column connections that can be used in SCBFs with RBMs were designed and tested. Based on the current work, the recently proposed concept of replaceable brace modules, accompanied by the recommended methods for designing columns and detailing beam-column connections, appears to be a promising approach. The fabrication and installation are simpler, the seismic performance is similar to that of SCBFs with currently accepted connection detailing, and the approach can increase the post-earthquake reparability of steel concentrically braced frames. / Dissertation / Doctor of Philosophy (PhD)
|
Page generated in 0.0996 seconds