• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improvements to the Design and Use of Post-tensioned Self-centering Energy-dissipative (SCED) Braces

Erochko, Jeffrey A. 07 August 2013 (has links)
The self-centering energy dissipative (SCED) brace is an innovative cross-bracing system that eliminates residual building deformations after seismic events and prevents the progressive drifting that other inelastic systems are prone to experience under long-duration ground motions. This research improves upon the design and use of SCED braces through three large-scale experimental studies and an associated numerical building model study. The first experimental study increased the strength capacity of SCED braces and refined the design procedure through the design and testing of a new high-capacity full-scale SCED brace. This brace exhibited full self-centering behaviour and did not show significant degradation of response after multiple earthquake loadings. The second experimental study extended the elongation capacity of SCED braces through the design and testing of a new telescoping SCED (T-SCED) brace that provided self-centering behaviour over a deformation range that was two times the range that was achieved by the original SCED bracing system. It exhibited full self-centering in a single storey full-scale frame that was laterally deformed to 4% of its storey height. The third experimental study confirmed the dynamic behaviour of a multi-storey SCED-frame in different seismic environments and confirmed the ability of computer models of differing complexity to accurately predict the seismic response. To achieve these goals, a three-storey SCED-braced frame was designed, constructed, and tested on a shake table. Lastly, a numerical six-storey SCED-braced building model was constructed. This model used realistic brace properties that were determined using a new software tool that simulates the full detailed mechanics of SCED and T-SCED braces. The building model showed that initial SCED brace stiffness does not have a significant effect on SCED frame behaviour, that T-SCEDs generally perform better than traditional SCEDs, and that the addition of viscous dampers in parallel with SCED braces can significantly reduce drifts and accelerations while only causing a small increase in the base shear.
2

Improvements to the Design and Use of Post-tensioned Self-centering Energy-dissipative (SCED) Braces

Erochko, Jeffrey A. 07 August 2013 (has links)
The self-centering energy dissipative (SCED) brace is an innovative cross-bracing system that eliminates residual building deformations after seismic events and prevents the progressive drifting that other inelastic systems are prone to experience under long-duration ground motions. This research improves upon the design and use of SCED braces through three large-scale experimental studies and an associated numerical building model study. The first experimental study increased the strength capacity of SCED braces and refined the design procedure through the design and testing of a new high-capacity full-scale SCED brace. This brace exhibited full self-centering behaviour and did not show significant degradation of response after multiple earthquake loadings. The second experimental study extended the elongation capacity of SCED braces through the design and testing of a new telescoping SCED (T-SCED) brace that provided self-centering behaviour over a deformation range that was two times the range that was achieved by the original SCED bracing system. It exhibited full self-centering in a single storey full-scale frame that was laterally deformed to 4% of its storey height. The third experimental study confirmed the dynamic behaviour of a multi-storey SCED-frame in different seismic environments and confirmed the ability of computer models of differing complexity to accurately predict the seismic response. To achieve these goals, a three-storey SCED-braced frame was designed, constructed, and tested on a shake table. Lastly, a numerical six-storey SCED-braced building model was constructed. This model used realistic brace properties that were determined using a new software tool that simulates the full detailed mechanics of SCED and T-SCED braces. The building model showed that initial SCED brace stiffness does not have a significant effect on SCED frame behaviour, that T-SCEDs generally perform better than traditional SCEDs, and that the addition of viscous dampers in parallel with SCED braces can significantly reduce drifts and accelerations while only causing a small increase in the base shear.
3

Behavior of Post-Tensioning Systems Subjected to Inelastic Cyclic Loading

Bruce, Trevor Louis 24 June 2014 (has links)
Post-tensioning (PT) strands have been employed in a number of self-centering seismic force resisting systems as part of the restoring force mechanism which virtually eliminates residual building drifts following seismic loading. As a result of the PT strands large elastic deformation capability, they have been proven to work efficiently in these types of systems. Although typically designed to stay elastic during design basis earthquake events, strands may experience inelastic cyclic loading during extreme earthquakes. Furthermore, the yielding and fracture behavior of PT strand systems is central to the collapse behavior of self-centering systems. The loading conditions to which PT strands are typically subjected in prestressed/post-tensioned concrete applications are vastly dissimilar, and only limited research has explored the behavior of PT strands as subjected to inelastic cyclic loading. The testing program conducted to characterize the behavior of PT strand systems as they might be applied in self-centering applications incorporated more than fifty tests, including monotonic and cyclic tests to failure. Variations in the test configuration included strand obtained from two manufacturers, single-use and multiple-use anchorage systems, and variations in initial post-tensioning strand stress. Characteristics of the response that were investigated included seating losses, deformation capacity prior to initial fracture, additional deformation capacity after initial fracture, and the overall load-deformation behavior. Data was analyzed to provide recommendations for PT strand system usage in self-centering seismic force resisting systems. It was concluded that significant strength and ductility allow PT strand systems to consistently provide self-centering systems with reliable restoring force capability. / Master of Science
4

Parametric Study of Self-Centering Concentrically-Braced Frames with Friction-Based Energy Dissipation

Jeffers, Brandon 15 May 2012 (has links)
No description available.
5

Ultimate Limit States in Controlled Rocking Steel Braced Frames

Steele, Taylor Cameron January 2019 (has links)
The Insurance Bureau of Canada released a report in 2013 that evaluated the seismic risk of two major metropolitan areas of Canada, with projected losses of $75bn in British Columbia along the Cascadia subduction zone, and $63bn in the east through the Ottawa-Montreal-Quebec corridor. Such reports should prompt researchers and designers alike to rethink the way that seismic design is approached in Canada to develop resilient and sustainable cities for the future. To mitigate the economic losses associated with earthquake damage to buildings in seismically active areas, controlled rocking steel braced frames have been developed as a seismically resilient low-damage lateral-force resisting system. Controlled rocking steel braced frames (CRSBFs) mitigate structural damage during earthquakes through a controlled rocking mechanism, where energy dissipation can be provided at the base of the frame, and pre-stressed tendons pull the frame back to its centred position after rocking. The result is a building for which the residual drifts of the system after an earthquake are essentially zero, and the energy dissipation does not result from structural damage. Design methods for the base rocking joint and the capacity-protected frame members in CRSBFs have been proposed and validated both numerically and experimentally. However, the is no consensus on how to approach the design of the frame members, questions remain regarding how best to design CRSBFs to prevent building collapse, and no experimental work has been done regarding how to connect the CRSBF to the rest of the structure to accommodate the rocking motion. Because the force limiting mechanism of a CRSBF is rocking only at the base of the frame, the frame member forces are greatly influenced by the higher-mode response, resulting in more complex methods to design the frame members. This thesis begins by outlining two new design procedures for the frame members in controlled rocking steel braced frames that target both simplicity and accuracy. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static procedure that does not require any modifications to the elastic frame model, instead using theory-based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration to estimate the forces at the target intensity. The base rocking joint design is generally in good agreement between the various research programs pioneering the development of the CRSBFs. However, the numerous parameters available to select during the design of the base rocking joint give designers an exceptional amount of control over the performance of the system, and little research is available on how best to select these parameters to target or minimise the probability of collapse for the building. This thesis presents a detailed numerical model to capture collapse of buildings with CRSBFs as their primary lateral force resisting system and uses this model to generate collapse fragility curves for different base rocking joint design parameters. The parameters include the response modification factor, the hysteretic energy dissipation ratio, and the post-tensioning prestress ratio. This work demonstrates that CRSBFs are resilient against collapse, as designing the base rocking joint with response modification factors as large as 30, designing the post-tensioning to prevent yielding at moderate seismic hazard levels, and using zero energy dissipation could lead to designs with acceptable margins of safety against collapse. While the design procedures are shown to be accurate for estimating the frame member force demand for the targeted intensity level, there is still a high level of uncertainty around what intensity of earthquake a building will experience during its lifespan, and there is no consensus on what intensity should be targeted for design. To address this, the ability of the capacity design procedures to provide a sufficiently low probability of collapse due to excessive frame member buckling and yielding is evaluated and compared to the probability that the building will collapse due to excessive rocking of the frame. The results of the research presented here suggest that the probability of collapse due to either frame member failure or excessive rocking should be evaluated separately, and that targeting the intensity with a 10% probability of exceedance in 50 years is sufficient for the design of the frame members. Finally, critical to the implementation of CRSBFs in practice is how they may be connected to the rest of the structure to accommodate the uplifting of the CRSBF while rocking under large lateral forces. An experimental program was undertaken to test three proposed connection details to accommodate the relative uplifts and forces. The connections that accommodate the uplifts through sliding performed better than that which accommodated the uplifts though material yielding, but the best way to transfer the forces and accommodate the uplifting without influencing the overall behaviour of the system is to position the connection such that it does not need to undergo large uplifts and carry lateral force simultaneously. A detailed numerical model of the experimental setup is presented and is shown to simulate the important response quantities for each of the tested connections. Using the results of this work, designers worldwide will be confident to design CRSBFs for structures from the base rocking joint to the selection of floor-to-frame connections for a complete system design while ensuring a safe and resilient building structure for public use and well-being. / Thesis / Doctor of Philosophy (PhD) / Traditional approaches to seismic design of buildings have generally been successful at preventing collapse and protecting the lives of the occupants. However, the buildings are often left severely damaged, often beyond repair. To address these concerns, controlled rocking steel braced frames have been proposed as part of a new construction technique to mitigate or prevent damage to steel buildings during earthquakes, but several aspects of the design and overall safety have yet to be explored or demonstrated. This thesis proposes and validates new tools to design controlled rocking steel braced frames and provides recommendations on how best to design them to achieve a safe probability against collapse. Details are proposed and presented for components to connect the controlled rocking steel braced frames into the rest of the structure. The findings of this thesis will aid practitioners looking to deliver resilient and sustainable structural designs for buildings in our cities of the future.

Page generated in 0.1321 seconds