Spelling suggestions: "subject:"conception microélectronique"" "subject:"conception microélectronique""
1 |
Conception d'un circuit electonique pour la récupération d'énergie électromagnétique en technologie FDSOI 28 nm / Design of an Electronic circuit for Rf energy Harvesting in FDSOI 28nm technologyAwad, Mohamad 20 September 2018 (has links)
La récupération d’énergie est un thème de recherche prometteur qui explore un large éventail de sources. Parmi ces sources, on trouve l’énergie mécanique, thermique, électromagnétique, etc. Cette thèse se propose d’explorer des solutions techniques de récupération de l’énergie électromagnétique ambiante. Ce type d’énergie offre une belle opportunité pour participer à l’alimentation, partielle ou complète, d’un système de communication sans fil à basse consommation. Beaucoup d’applications intéressantes telles que les réseaux de capteurs sans fil (WSN), assurant ainsi l’IoT (internet of things), dans le domaine médical et dans la sécurité, sont dotés d’une antenne. Or cette antenne qui est un composant passif volumineux n’est utilisée qu’une faible fraction du temps pour les seules communications. Dans le cadre de la récupération d’énergie RF, l’idée est de mettre à profit ce composant pour glaner l’énergie électromagnétique ambiante, malgré la faible puissance récupérée. Associée à l’antenne, la récupération d’énergie RF est basée sur la mise en œuvre de diodes en redresseurs. Dans ce manuscrit, des diodes intégrées issues d’une technologie moderne : FDSOI 28 nm sont utilisées.A l’issue de ces travaux, trois « runs » dont deux en technologie FDSOI ont pu être réalisés. Des convertisseurs d’énergie RF, du type Dickson, d’un et deux étages, ont été conçus et réalisés à l’aide de cette technologie, mesurés et même comparés à des convertisseurs RF-DC réalisés avec une autre technologie BiCMOS 55 nm. Les convertisseurs réalisés sont à l’état de l’art au niveau du rendement de conversion énergétique pour une puissance donnée de l’ordre de -20 dBm. La technologie FD-SOI offre un nouveau degré de liberté à l’aide de la polarisation de la grille arrière (BG : Back Gate). Cette polarisation du BG permet de modifier les paramètres de l’élément non-linéaire à la base de la conversion. Par ailleurs, une étude sur la réalisation d’une diode Schottky intégrée dans le processus de la FDSOI 28 nm a même été envisagée. A l’issue de ces premières expériences, une méthode d’optimisation de la conception de ces convertisseurs Dickson à partir d’un cahier des charges simplifiée, a été proposée. / Energy harvesting is a promising research theme which analyzes a wide range of sources for the application. These sources can be mechanical, thermal or electromagnetic, etc. Hereby, the work presented explores technical solutions for ambient electromagnetic energy harvesting. Electromagnetic energy is capable of partly or completely supplying energy to low-power wireless communication systems. Many interesting applications are feasible, such as, wireless sensor networks (WSN) ensuring IoT (Internet-of-Things), in the medical field, security, by using equipments containing an antenna. However, the antenna is a voluminous passive component which is utilized merely for a fraction of the time, i.e., just for communications. The underlying idea of RF energy harvesting is to use the antenna to harvest the ambient electromagnetic energy, despite the low power recovered. Associated with the antenna, the RF energy harvesting is based on implementing diodes in rectifiers. In this manuscript, integrated diodes from modern technology: FD-SOI 28 nm are studied.In this work, three run for RF energy harvesting are designed. Two of them are realized in FD-SOI technology. One and two stage Dickson rectifiers for RF energy harvesting using FD-SOI are designed, characterized, measured and compared to RF-DC converters made with 55nm BiCMOS technology. These rectifiers are state-of-the-art in terms of the power conversion efficiency for a given power of the order of -20 dBm. Furthermore, FD-SOI technology offers a new degree of freedom with the back gate polarization (BG). This polarization of the BG makes it viable to change the parameters of the non-linear elements at the base of the conversion. Moreover, an investigation of integrated Schottky diodes using FDSOI 28 nm is presented. At the end of these experiments, a method of optimizing of the design of these Dickson converters based on simplified specifications is proposed.
|
2 |
Interface faible consommation pour capteurs MEMS résistifs à faible sensibilité / Low power interface design for low sensitivity resistive MEMS sensorsBoujamaa, El Mehdi 07 December 2010 (has links)
Durant ces vingt dernières années l'émergence des technologies MEMS a rendu possible l'intégration de capteurs au sein de systèmes complexes de taille réduite. Quelques-uns de ces capteurs se retrouvent dans des dispositifs tels que les téléphones mobiles, GPSs, ordinateurs portables… Il existe néanmoins une contrainte majeure, quand à l’utilisation de capteurs dans les applications fonctionnant sur batterie : leurs «consommation». En effet du fait de cette contrainte la plus part des capteurs développés de nos jours sont basés sur des modes de transduction capacitif limitant ainsi la consommation mais par la même occasion complexifiant lourdement la conception de l’élément sensible. Cette complexité de réalisation de l’élément sensible se répercute donc sur le prix du produit final. Le meilleur moyen de diminuer le prix de revient d’un capteur est l’utilisation d’une technologie de transduction qui permet de diminuer la complexité structurelle du capteur. La transduction résistive répond bien à ce problème, cependant les structures de conditionnement de signal les plus utilisées dissipent une puissance excessive. Cette thèse propose donc l’étude d’une structure électronique faible bruit / faible consommation innovante (le pont Actif) permettant le conditionnement de signaux issus de capteurs résistifs. Les critères d’évaluation du pont actif sont ici le gain, le bruit intrinsèque de l’électronique (facteur limitant de la résolution) et, le plus important, la consommation globale du capteur (éléments sensible + électronique de traitement). / Since resistive sensors exist, the Wheatstone bridge has been the most commonly used conditioningand read-out architecture. Even with the development of MEMS in the last decade, the Wheatstonebridge remains the preferred solution to transpose a physical magnitude into the electrical domain assoon as a resistive transduction method is used. Nevertheless the Wheatstone bridge introduces amajor issue for low-power sensors, the dependence of resolution to power consumption. Moreover,the output signal is directly proportional to the supply voltage. Finally, power consumption is theprice to pay for high resolution in a Wheatstone bridge.Low-power requirement, in mobile applications, is probably one of the main reasons to explain whycapacitive transduction has been preferred for many MEMS. Indeed, even if the fabrication process isoften more complex than for resistive sensors, the power consumption of capacitive transduction isfar below the one of dissipative resistor-based sensors.In order to extend the potential application of resistive MEMS, a power-efficient interface circuit isrequired. My PhD thesis deals with the design and manufacturing of an innovative conditioning andread-out interface for resistive MEMS sensor. The proposed structure includes a digital offsetcompensation for robustness to process, voltage, temperature variations, and/or analog to digitalconversion. Results demonstrate good resolution to power consumption ratio and a good immunityto environmental parameters. Experimental results on a fully integrated CMOS/MEMS sensor finallydemonstrate the efficiency of this promising read-out architecture called The active bridge.
|
Page generated in 0.1166 seconds