51 |
Transfer and development length of 06-inch diameter prestressing strand in high strength lightweight concreteMeyer, Karl F. 05 1900 (has links)
No description available.
|
52 |
Development of the simplified method to evaluate dynamic mechanical analysis data on asphalt-aggregate mixturesAb-Wahab, Yunus Bin 16 February 1993 (has links)
Testing of asphalt binders and asphalt-aggregate mixtures using dynamic
mechanical analysis is becoming popular with improvements in high-speed
computers, precision equipment, and computer software. Researchers are trying
to describe the behavior of asphalt binders and asphalt-aggregate mixtures in
terms of their time- and temperature-dependent linear viscoelastic behavior.
The objectives of this thesis were to develop a simplified pneumatic test to
perform dynamic mechanical analysis (DMA), to evaluate the performance of the
pneumatic and hydraulic test systems using the computer software developed to
perform DMA tests, and, to develop a simplified method to evaluate the
experimental data obtained from DMA tests on aged asphalt-aggregate mixtures.
A simplified pneumatic test system was developed to perform DMA.
Computer software was also developed to perform DMA testing on both the
simplified pneumatic and hydraulic test systems. DMA was performed on both
test systems to compare their performance, and on aged asphalt-aggregate
mixtures to evaluate the application of the simplified method.
The results from the pneumatic and hydraulic test systems show that there
is about a 20 percent difference in the complex modulus, especially at high loading
frequencies. This is due to the compressibility of the air used in the pneumatic
test system. The compressibility of air is greater at warmer temperatures than at
cooler temperatures. Therefore, the application of the pneumatic test system to
perform dynamic testing should be limited to low frequencies ( < 2 Hz), low
temperatures ( < 25°C), and low load ( < 454 kg (1000 lbs.)) applications unless
a modification can be made to increase the pneumatic cylinder's response time to
match the hydraulic cylinder's response time.
The simplified analysis method developed in this thesis divides the DMA
results into four complex modulus and five phase angle parameters. These
parameters describe the shapes of the master stiffness and phase angle curves and
distinguished between the different asphalt-aggregate mixtures and the aging
methods performed on the aged asphalt-aggregate mixtures. The phase angle
parameters were reduced into two variables, peak frequency and peak angle,
which vary with the aging of each asphalt-aggregate mixture. The peak frequency
and peak angle decrease as the aging severity increases and the change of peak
frequency and peak angle vary with the asphalt-aggregate mixture and aging
treatment. Therefore, the complex modulus parameters and peak frequency and
peak angle may be good indicators to describe how a master curve's shape varies
with asphalt, aggregate, and aging type. / Graduation date: 1993
|
53 |
Tests on a micro-concrete model of a long-span folded plate shellAhmad, Yousef Nagi. January 1985 (has links)
Call number: LD2668 .T4 1985 A35 / Master of Science
|
54 |
A parametric study on the behavior of slender reinforced concrete framesLanzas, Lourdes Eneida, 1962- January 1989 (has links)
By using a nonlinear computer analysis, a parametric study is developed in order to examine the accuracy of the Moment Magnifier Method of the American Concrete Institute Code (ACI 318-83). The variables used in the parametric study are: axial load intensity, P/Po; column reinforcement ratio, rho; slenderness ratio, klu; shape of column cross section, flexural stiffness ratio, and distribution of axial loads. In the parametric study, 216 cases of single bay fixed-base portal frames are examined. The higher moment for each one of these frames at failure are then compared with the design moment predicted by the Moment Magnifier Method of the American Concrete Institute Code (ACI 318-83). The Moment Magnifier Method proved to be very conservative when the columns are subjected to high level of axial loads and when the slenderness ratio is increased.
|
55 |
The behaviour of reinforced concrete cantilever columns under lateral impact loadLoedolff, Matthys Johannes 12 1900 (has links)
Microreproduction of original thesis. / Thesis (PhD)--Stellenbosch University, 1990. / Some digitised pages may appear illegible due to the condition of the original microfiche copy. / ENGLISH ABSTRACT: see item for full text / AFRIKAANSE OPSOMMING: sien item vir volteks.
|
56 |
Full-range behaviour of concrete beams partially prestressed with unbonded tendonsTso, Karmen., 曹嘉雯. January 2007 (has links)
published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy
|
57 |
Full-range analysis of reinforced concrete members and framesLam, Yuet-kee, Jeffery., 林悦基. January 2009 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
|
58 |
Preparation and durability testing of pretensioned prestressed concrete specimensRieb, Stanley Lee. January 1959 (has links)
Call number: LD2668 .T4 1959 R54
|
59 |
Curing and the durabilty of concreteBallim, Yunus 08 June 2016 (has links)
A thesis submitted to the Faculty of Engineering,
University of the Witwatersrand, Johannesburg, in
fulfilment of the requirements for the degree of Doctor
of Philosophy.
Johannesburg, 1994. / This thesis presents the details and results of an
investigation into the effects of early age curing on
the durability of concrete The two main objectives of
the investigation were:
to develop simple test methods, applied at
relatively early ages, for measuring the effects
of early-age moist curing on the advance of
hydration in the cover zone of concrete;
to quantify the effect of early age curing on the
durability performance of concretes of various
strength grades and made with different binder
types.
[Abbreviated Abstract. Open document to view full version]
|
60 |
Synthetic Fiber Reinforced Concrete in Marine Environments and Indirect Tension TestUnknown Date (has links)
An experiment was conducted to evaluate the durability, toughness, and strength
of Synthetic Fiber Reinforced Concrete after being immersed in five separate
environments for one year at FAU SeaTech. The specimens were molded and reinforced
with two-inch Polypropylene/Polyethylene Fibers in a concrete aggregate matrix and
were cut into identical sizes. Some of these environments had accelerated parameters
meant to increase degradation to simulate longevity and imitate harsh environments or
seawater conditions. The environments consisted of: a high humidity locker (ideal
conditions), submerged in the Intracoastal Waterway (FAU barge), seawater immersion,
a wet and dry seawater immersion simulating a splash/tidal zone, and another in low pH
seawater. The latter three were in an elevated temperature room (87-95°F) which
produced more degradative properties. The specimens were monitored and the
environments were controlled. The specimens were then evaluated using the IDT test
method using force to initiate first-cracking and post-cracking behaviors. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
Page generated in 0.0746 seconds