1 |
Understanding Ionic Conductivity in Crystalline Polymer ElectrolytesBrandell, Daniel January 2005 (has links)
Polymer electrolytes are widely used as ion transport media in vital applications such as energy storage devices and electrochemical displays. To further develop these materials, it is important to understand their ionic conductivity mechanisms. It has long been thought that ionic conduction in a polymer electrolyte occurs in the amorphous phase, while the crystalline phase is insulating. However, this picture has recently been challenged by the discovery of the crystalline system LiXF6∙PEO6 (X=P, As or Sb) which exhibits higher conductivity than its amorphous counterpart. Their structures comprise interlocking hemi-helical PEO-chain pairs containing Li+ ions and separating them from the XF6- anions. The first Molecular Dynamics (MD) simulation study of the LiPF6∙PEO6 system is presented in this thesis. Although its conductivity is too low for most applications at ambient temperature, it can be enhanced by iso- and aliovalent anion doping. It is shown that the diffraction-determined structure is well reproduced on simulating the system using an infinite PEO-chain model. The Li-Oet coordination number here becomes 6 instead of 5; minor changes also occur in the polymer backbone configuration. The crystallographic asymmetric unit and diffraction profiles are also reproduced. On simulating a shorter-chain system (n=22), more resembling the real material, the structure retains its double hemi-helices, but the polymer adopts a more relaxed conformation, facilitating the formation of Li+-PF6- pairs. Infinite-chain simulation shows the ionic conduction to be dominated by anion motion, in contrast to earlier NMR results. The effects of doping are also reproduced. Shortening the polymer chain-length has the effect of raising the transport number for lithium, thereby bring it into better agreement with experiment. It can be concluded that it is critical to take polymer chain-length and chain-termination into account when modelling ionic conductivity mechanisms in crystalline polymer electrolytes.
|
2 |
Novel conductive adhesives for electronic packaging applications: a way towards economical, highly conductive, low temperature and flexible interconnectsZhang, Rongwei 29 March 2011 (has links)
Isotropically conductive adhesives (ICAs) are promising as a lead-free interconnect material; However, ICAs have a higher resistivity compared to tin/lead solder. The higher resistivity of ICAs results from the large contact resistance between conductive fillers. Several novel approaches to engineer the interface between electrically conductive fillers were studied to develop highly conductive ICAs. Shown in this dissertation are three methodologies to reduce contact resistance: low temperature sintering, fast sintering and in-situ reduction. Furthermore, two approaches, surface modification and in-situ protection, were developed to prevent oxidation and corrosion of silver-coated copper flakes to produce low cost ICAs. The findings and insights in this dissertation significantly contribute to (1) understanding of filler-filler, filler-polymer and structure-property relationships of ICAs; (2) the structural design and formulation of high performance ICAs; and (3) the wider use of ICAs in emerging applications such as printed electronics and solar cells.
|
3 |
Etude physique de la formation de films à base de polymères conducteurs et applications en micro-éléctroniqueBohli, Nadra 15 December 2009 (has links)
La polyaniline est un polymère conducteur intrinsèque aux potentialités indéniables dans le domaine de la micro-électronique. Elle allie la légèreté, le faible coût et la modularité des polymères avec les propriétés de conduction électrique des métaux. La mise à profit de ce mélange de propriétés à l’échelle industrielle nécessite une maitrise des procédés de mise en œuvre de la polyaniline, notamment sous forme de film polymère, domaine où il y a encore un manque de maitrise. Pour y remédier, il faudrait tout d’abord comprendre l’influence de chaque paramètre de mise en œuvre sur les propriétés de conduction du film de polyaniline. Pour cela, nous avons choisi une polyaniline plast-dopée commerciale à l’état de dispersion et avons fait une étude paramétrique sur l’effet du type de solvant utilisé pour la dispersion ainsi que celui de la température d’évaporation de celui-ci lors du dépôt du film. Deux types d’études ont été menés : la première porte sur les propriétés rhéologiques et diélectriques des dispersions de polyaniline et la seconde sur les propriétés structurales et de conduction des films. A travers la première étude, nous avons pu montré que lors du chauffage des dispersions de polyaniline, celles-ci subissaient une transition structurale liquide-liquide du second ordre dont les paramètres varient avec le type du solvant utilisé. A travers la seconde étude, nous avons aussi mis en évidence que les films déposés dans les domaines avoisinant la température transition de phase dans les mélanges liquides sont les moins conducteurs et les moins cristallisés. Selon le type de solvant choisi, deux mécanismes de conduction ont été trouvés : les sauts à portées variables tridimensionnel (VRH 3D), pour le cas de la série de films issus de la dispersion dans l’acide dichloroacétique et déplacement par effet tunnel induit par les fluctuations thermiques (FIT) pour la série de films issus de la dispersion dans le mélange acide dichloroacétique / acide formique. Il en ressort finalement que pour obtenir un film de polyaniline plast-dopée ayant la conductivité la plus élevée, il faut appliquer les conditions expérimentales qui permettent d’obtenir un degré de cristallinité élevé (298 K pour PANI/DCAA). / The purpose of this study is to perform polyaniline films with the highest conductivity. The effect of the solvent type and the casting temperature on the electrical properties of plastdoped polyaniline dispersions and films were investigated. For this purpose, rheological and dielectric investigations have been undertaken for dispersions of plast-doped polyaniline in two different solvents (dichloroacetic acid and formic acid / dichloroacetic acid mixture). Changes appearing above a certain temperature, 318K for PANI/DCAA and 313K for PANI/DCAA-FA, for both rheological dielectric and rheological parameters revealed the existence of a second order liquid-liquid structural transition occurring in the polyaniline organic dispersions. We also investigated the effect of the selected processing parameters on the film properties. We found that the DC conductivity mechanism is governed by Mott’s three-dimensional variable range hopping (3D VRH) model for PANI/DCAA films and by a fluctuation induced tunnelling model (FIT) for PANI/DCAA-FA films. Besides, the films cast at temperatures around the second order liquid-liquid structural transition temperature of polyaniline dispersions lead to the lowest conductivity and crystallinity, regardless of the solvent type used. A qualitative correlation was also found between the conductivity and the crystallinity of the polyaniline films. So, in order to obtain films with the highest electric conductivities, we have to apply experimental conditions leading to the highest crystallinity (298 K for PANI/DCAA).
|
Page generated in 0.098 seconds