• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Methods for Meta–Analyses of Rare Events, Sparse Data, and Heterogeneity

Zabriskie, Brinley 01 May 2019 (has links)
The vast and complex wealth of information available to researchers often leads to a systematic review, which involves a detailed and comprehensive plan and search strategy with the goal of identifying, appraising, and synthesizing all relevant studies on a particular topic. A meta–analysis, conducted ideally as part of a comprehensive systematic review, statistically synthesizes evidence from multiple independent studies to produce one overall conclusion. The increasingly widespread use of meta–analysis has led to growing interest in meta–analytic methods for rare events and sparse data. Conventional approaches tend to perform very poorly in such settings. Recent work in this area has provided options for sparse data, but these are still often hampered when heterogeneity across the available studies differs based on treatment group. Heterogeneity arises when participants in a study are more correlated than participants across studies, often stemming from differences in the administration of the treatment, study design, or measurement of the outcome. We propose several new exact methods that accommodate this common contingency, providing more reliable statistical tests when such patterns on heterogeneity are observed. First, we develop a permutation–based approach that can also be used as a basis for computing exact confidence intervals when estimating the effect size. Second, we extend the permutation–based approach to the network meta–analysis setting. Third, we develop a new exact confidence distribution approach for effect size estimation. We show these new methods perform markedly better than traditional methods when events are rare, and heterogeneity is present.

Page generated in 0.1136 seconds