• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probing the Molecular Mechanisms Underlying Familial Amyotrophic Lateral Sclerosis: New Insight into Unfolding and Misfolding Mechanisms of the Cu, Zn Superoxide Dismutase

Mulligan, Vikram 18 December 2012 (has links)
While great strides have been made in treating many classes of human disease, the late-onset neurodegenerative diseases continue to elude modern medicine. These diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), the transmissible spongiform encephalopathies (TSEs), and amyotrophic lateral sclerosis (ALS), involve accumulation of insoluble aggregates of one or more causative proteins, leading to progressive loss of central nervous system neurons, progressively worsening neurological symptoms, and eventual patient death. All of these diseases are currently incurable and fatal. In the case of ALS, progressive death of upper and lower motor neurons leads to full-body paralysis, respiratory difficulty, and patient death. Of the subset of ALS cases showing familial inheritance, approximately 20% are caused by mutations in the SOD1 gene, encoding the Cu, Zn superoxide dismutase (SOD1). These mutations do not have the common property of impairing SOD1's normal function as a free radical scavenger. Instead, they are thought to increase the protein's likelihood of misfolding and aggregating via a poorly-understood aggregation cascade. It is believed that species populated along the misfolding and aggregation pathway may prove to be good targets for therapies designed to block accumulation of downstream toxic species, or to prevent aberrant protein-protein interactions responsible for neurotoxicity. In this thesis, several new techniques are developed to enable detailed elucidation of the SOD1 unfolding and misfolding pathways. Time-resolved measurements collected during SOD1 unfolding or misfolding of release of bound Cu and Zn, of changes in intrinsic fluorescence, of exposure of hydrophobic surface area, and of alterations in the chemical environment of histidine residues, are presented. A new mathematical analysis technique named the Analytical Laplace Inversion Algorithm is developed for rapid extraction of mechanistic information from these time-resolved signals. These tools are applied to the construction of the most detailed models to date of the unfolding and misfolding mechanisms of WT and ALS-causing mutant SOD1. The models presented identify several well-populated unfolding and misfolding intermediates that could serve as good targets for therapies designed to address the fundamental molecular mechanisms underlying SOD1-associated ALS, and to treat what is currently a devastating and incurable disease.
2

Probing the Molecular Mechanisms Underlying Familial Amyotrophic Lateral Sclerosis: New Insight into Unfolding and Misfolding Mechanisms of the Cu, Zn Superoxide Dismutase

Mulligan, Vikram 18 December 2012 (has links)
While great strides have been made in treating many classes of human disease, the late-onset neurodegenerative diseases continue to elude modern medicine. These diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), the transmissible spongiform encephalopathies (TSEs), and amyotrophic lateral sclerosis (ALS), involve accumulation of insoluble aggregates of one or more causative proteins, leading to progressive loss of central nervous system neurons, progressively worsening neurological symptoms, and eventual patient death. All of these diseases are currently incurable and fatal. In the case of ALS, progressive death of upper and lower motor neurons leads to full-body paralysis, respiratory difficulty, and patient death. Of the subset of ALS cases showing familial inheritance, approximately 20% are caused by mutations in the SOD1 gene, encoding the Cu, Zn superoxide dismutase (SOD1). These mutations do not have the common property of impairing SOD1's normal function as a free radical scavenger. Instead, they are thought to increase the protein's likelihood of misfolding and aggregating via a poorly-understood aggregation cascade. It is believed that species populated along the misfolding and aggregation pathway may prove to be good targets for therapies designed to block accumulation of downstream toxic species, or to prevent aberrant protein-protein interactions responsible for neurotoxicity. In this thesis, several new techniques are developed to enable detailed elucidation of the SOD1 unfolding and misfolding pathways. Time-resolved measurements collected during SOD1 unfolding or misfolding of release of bound Cu and Zn, of changes in intrinsic fluorescence, of exposure of hydrophobic surface area, and of alterations in the chemical environment of histidine residues, are presented. A new mathematical analysis technique named the Analytical Laplace Inversion Algorithm is developed for rapid extraction of mechanistic information from these time-resolved signals. These tools are applied to the construction of the most detailed models to date of the unfolding and misfolding mechanisms of WT and ALS-causing mutant SOD1. The models presented identify several well-populated unfolding and misfolding intermediates that could serve as good targets for therapies designed to address the fundamental molecular mechanisms underlying SOD1-associated ALS, and to treat what is currently a devastating and incurable disease.
3

Mutant Rhodopsins in Autosomal Dominant Retinitis Pigmentosa Display Variable Aggregation Properties

Gragg, Megan Ellen 31 May 2018 (has links)
No description available.
4

Effet de chaperones pharmacologiques sur les formes mutantes du récepteur mélanocortine de type 4 responsables de l'obésité morbide précoce

Michaud, Douce 08 1900 (has links)
Le récepteur mélanocortine de type 4 (MC4R) est un récepteur couplé aux protéines G impliqué dans la régulation de la prise alimentaire et de l’homéostasie énergétique. Quatre-vingt pour cent des mutants du MC4R reliés à l’obésité morbide précoce (OMP) sont retenus à l’intérieur de la cellule. Le système de contrôle de qualité (SCQ) est probablement responsable de cette rétention, par la reconnaissance d’une conformation inadéquate des mutants. Le rétablissement de l’expression à la surface cellulaire et de la fonctionnalité de ces mutants est donc d’intérêt thérapeutique. Dans cette optique, des composés lipophiles spécifiques pour le MC4R ont été sélectionnés sur la base de leur sélectivité. Nous avons démontré qu’ils agissent à titre de chaperone pharmacologique (CP) en rétablissant l’expression à la surface cellulaire et la fonctionnalité des récepteurs mutants S58C et R165W, et qu’ils favorisent leur N-glycosylation complexe (maturation). Le suivi par BRET du site d’action des CP du MC4R suggère une action en aval de l’interaction calnexine-MC4R. De manière générale, une CP peut avoir un effet différent selon le mutant traité en induisant des conformations distinctes du récepteur plus ou moins aptes à se dissocier du SCQ et à activer la voie de signalisation, et un mutant peut répondre différemment selon la CP utilisée par des différences d’affinité pour le ligand, la CP et les effecteurs. Une meilleure compréhension du mode d’action des CP pourrait aider au développement de nouvelles approches thérapeutiques non seulement pour l’OMP, mais aussi pour d’autres maladies conformationnelles causées par le mauvais repliement de protéines. / The MC4R is a G-protein coupled receptor involved in the central regulation of food intake and energy homeostasis. Eighty percent of childhood obesity-related MC4R mutants are retained intracellularly, probably via the quality control system acting on misfolded receptors. Thus, rescuing cell surface targeting and functionality of these mutant receptors could be of therapeutic value. Cell permeable MC4R selective ligands have been tested and were able to restore cell surface expression and signalling activity of S58C and R165W MC4R mutants. Those compounds, according to their mode of action, are described as pharmacological chaperones (PC). The MC4R-PCs also helps to rescue the glycosylation pattern (maturation) of the MC4R mutants. The site of action of MC4R-PCs of the MC4R mutants monitored by BRET suggests an action downstream of the calnexin-MC4R interaction, most likely at the level of the Golgi apparatus. Generally, a CP can have different effects according to the mutant by stabilizing distinct conformations of the receptor that are more or less able to exit the quality control system and to activate the signaling pathway, and a mutant can respond differently according to the CP used by its distinct affinity to the ligand, the CP itself and the effectors. A better understanding of PCs’ mode of action could help in the design of novel therapeutic approaches not only for early-onset morbid obesity (EOMO) but also for other conformational diseases resulting from protein misfolding.
5

Effet de chaperones pharmacologiques sur les formes mutantes du récepteur mélanocortine de type 4 responsables de l'obésité morbide précoce

Michaud, Douce 08 1900 (has links)
No description available.

Page generated in 0.1492 seconds