• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elliptic Curves and The Congruent Number Problem

Star, Jonathan 01 January 2015 (has links)
In this paper we explain the congruent number problem and its connection to elliptic curves. We begin with a brief history of the problem and some early attempts to understand congruent numbers. We then introduce elliptic curves and many of their basic properties, as well as explain a few key theorems in the study of elliptic curves. Following this, we prove that determining whether or not a number n is congruent is equivalent to determining whether or not the algebraic rank of a corresponding elliptic curve En is 0. We then introduce L-functions and explain the Birch and Swinnerton- Dyer (BSD) Conjecture. We then explain the machinery needed to understand an algorithm by Tim Dokchitser for evaluating L-functions at 1. We end by computing whether or not a given number n is congruent by implementing Dokchitser’s algorithm with Sage and by using Tunnel’s Theorem.

Page generated in 0.0653 seconds