• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 54
  • 50
  • 12
  • 10
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 345
  • 126
  • 67
  • 49
  • 33
  • 30
  • 29
  • 25
  • 23
  • 23
  • 22
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the abc-conjecture

Drudge, Keldon W. January 1995 (has links)
Note:
2

Researching and understanding the process of proving the Poincaré conjecture /

Nelson, Julie Marie, January 2008 (has links) (PDF)
Thesis (M.A.) -- Central Connecticut State University, 2008. / Thesis advisor: Jeffrey McGowan. "... in partial fulfillment of the requirements for the degree of Master of Arts in Mathematics." Includes bibliographical references. Also available via the World Wide Web.
3

Finite groups with odd Sylow normalizers

Guralnick, Robert M., Navarro, Gabriel, Tiep, Pham Huu 10 June 2016 (has links)
We determine the non-abelian composition factors of the finite groups with Sylow normalizers of odd order. As a consequence, among others, we prove the McKay conjecture and the Alperin weight conjecture for these groups at these primes.
4

Computations on an equation of the Birch and Swinnerton-Dyer type

Portillo-Bobadilla, Francisco Xavier 28 August 2008 (has links)
Not available / text
5

Computations on an equation of the Birch and Swinnerton-Dyer type

Portillo-Bobadilla, Francisco Xavier, Voloch, José Felipe, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Felipe Voloch. Vita. Includes bibliographical references. Also available from UMI.
6

Ramification et points de petite hauteur / Ramification and points of small height

Plessis, Arnaud 18 October 2019 (has links)
Dans cette thèse, on s'intéressera aux points de petite hauteur dans le groupe multiplicatif et sur une courbe elliptique.Dans le cas du groupe multiplicatif, on étudiera tout d'abord les corps dont les points de petites hauteurs sont les racines de l'unité.Ensuite, on localisera les points de petite hauteur dans un corps généré par certains groupes de rang fini.Pour cela, on aura besoin d'étudier les groupes de ramification de certaines extensions radicales.Ces résultats vont dans la direction d'une conjecture de Rémond.Il existe aussi un analogue de cette conjecture dans le cas des variétés abéliennes et il semblerait qu'on puisse même l'étendre au cas des variétés semi-abéliennes isotriviales.Cette nouvelle conjecture permet de relier entre eux certains théorèmes déjà présent dans la littérature.Cependant, ces résultats ne concerne que le cas où les points de petite hauteur sont des points de torsion.Pour conclure cette thèse, on donnera un premier exemple de cette conjecture dans le cas où les points de petite hauteur ne sont pas nécessairement des points de torsion. / In this thesis, we will focus on points of small height in both multiplicative group and on an elliptic curve.Firstly, in the multiplicative group case, we will study fields whose points of small height are eNSUITE? roots of the unity.In a second time, we will localise the points of small height on a field generated by some groups of finite rank, according to a conjecture of Rémond. To this end, we will study ramification groups concerning radiciel extensions.There also exists an analogue of this conjecture of Rémond on the abelian varieties case and it would seem that we can expand it by including split semi-abelian varieties. This new conjecture allows us to connect some theorems already present in the literature.However, these results only concern the case where the points of small height are torsion points.To conclude this thesis, we will give a first example of this conjecture in the case where points of small height are not necessarily torsion points.
7

On the characteristic polynomial of a random unitary matrix and the Riemann zeta function

Hughes, Christopher Paul January 2001 (has links)
No description available.
8

Non supersymmetric deformations of the AdS CFT Correspondence

Crooks, David Earl January 2003 (has links)
No description available.
9

On rational elliptic curves with given conductor

Monteiro, Antomio C. R. January 1990 (has links)
No description available.
10

Understanding Counterexamples to Lubin's Conjecture

Heald, Andrea 01 May 2007 (has links)
My thesis deals with finding counterexamples to Lubin’s Conjecture. Lubin’s Conjecture states that for power series f, g with coefficients in Zp, and f invertible and non-torsion, g non-invertible, then if f ◦ g = g ◦ f , f , g are endomorphisms of a formal group over Zp. This conjecture connects formal power series over the ring of p-adic integers (Zp) to formal groups. In this paper I will explain the properties of Formal Groups, their endomorphisms and logarithms, and will illustrate some properties of power series over the rings Qp and Zp.

Page generated in 0.0608 seconds