Spelling suggestions: "subject:"conjugated prior""
1 |
On conjugate families and Jeffreys priors for von Mises-Fisher distributionsHornik, Kurt, Grün, Bettina January 2013 (has links) (PDF)
This paper discusses characteristics of standard conjugate priors and their induced
posteriors in Bayesian inference for von Mises-Fisher distributions, using either the
canonical natural exponential family or the more commonly employed polar coordinate
parameterizations. We analyze when standard conjugate priors as well as posteriors are
proper, and investigate the Jeffreys prior for the von Mises-Fisher family. Finally, we
characterize the proper distributions in the standard conjugate family of the (matrixvalued)
von Mises-Fisher distributions on Stiefel manifolds.
|
2 |
The effects of three different priors for variance parameters in the normal-mean hierarchical modelChen, Zhu, 1985- 01 December 2010 (has links)
Many prior distributions are suggested for variance parameters in the hierarchical model. The “Non-informative” interval of the conjugate inverse-gamma prior might cause problems. I consider three priors – conjugate inverse-gamma, log-normal and truncated normal for the variance parameters and do the numerical analysis on Gelman’s 8-schools data. Then with the posterior draws, I compare the Bayesian credible intervals of parameters using the three priors. I use predictive distributions to do predictions and then discuss the differences of the three priors suggested. / text
|
3 |
On standard conjugate families for natural exponential families with bounded natural parameter space.Hornik, Kurt, Grün, Bettina 04 1900 (has links) (PDF)
Diaconis and Ylvisaker (1979) give necessary conditions for conjugate priors for distributions from the natural exponential family to be proper as well as to have the
property of linear posterior expectation of the mean parameter of the family. Their conditions for propriety and linear posterior expectation are also sufficient if the natural parameter space is equal to the set of all d-dimensional real numbers. In this paper their results are extended to characterize when conjugate priors are proper if the natural parameter space is bounded. For the special case where the natural exponential family is through a spherical probability distribution n,we show that the proper conjugate priors can be characterized by the behavior of the moment generating function of n at the boundary of the natural parameter space, or the second-order tail behavior of n. In addition, we
show that if these families are non-regular, then linear posterior expectation never holds.
The results for this special case are also extended to natural exponential families through elliptical probability distributions.
|
4 |
Bayesian Methods in Gaussian Graphical ModelsMitsakakis, Nikolaos 31 August 2010 (has links)
This thesis contributes to the field of Gaussian Graphical Models by exploring either numerically or theoretically various topics of Bayesian Methods in Gaussian Graphical Models and by providing a number of interesting results, the further exploration of which would be promising, pointing to numerous future research directions.
Gaussian Graphical Models are statistical methods for the investigation and representation of interdependencies between components of continuous random vectors. This thesis aims to investigate some issues related to the application of Bayesian methods for Gaussian Graphical Models. We adopt the popular $G$-Wishart conjugate prior $W_G(\delta,D)$ for the precision matrix. We propose an efficient sampling method for the $G$-Wishart distribution based on the Metropolis Hastings algorithm and show its validity through a number of numerical experiments. We show that this method can be easily used to estimate the Deviance Information Criterion, providing a computationally inexpensive approach for model selection.
In addition, we look at the marginal likelihood of a graphical model given a set of data. This is proportional to the ratio of the posterior over the prior normalizing constant. We explore methods for the estimation of this ratio, focusing primarily on applying the Monte Carlo simulation method of path sampling. We also explore numerically the effect of the completion of the incomplete matrix $D^{\mathcal{V}}$, hyperparameter of the $G$-Wishart distribution, for the estimation of the normalizing constant.
We also derive a series of exact and approximate expressions for the Bayes Factor between two graphs that differ by one edge. A new theoretical result regarding the limit of the normalizing constant multiplied by the hyperparameter $\delta$ is given and its implications to the validity of an improper prior and of the subsequent Bayes Factor are discussed.
|
5 |
Bayesian Methods in Gaussian Graphical ModelsMitsakakis, Nikolaos 31 August 2010 (has links)
This thesis contributes to the field of Gaussian Graphical Models by exploring either numerically or theoretically various topics of Bayesian Methods in Gaussian Graphical Models and by providing a number of interesting results, the further exploration of which would be promising, pointing to numerous future research directions.
Gaussian Graphical Models are statistical methods for the investigation and representation of interdependencies between components of continuous random vectors. This thesis aims to investigate some issues related to the application of Bayesian methods for Gaussian Graphical Models. We adopt the popular $G$-Wishart conjugate prior $W_G(\delta,D)$ for the precision matrix. We propose an efficient sampling method for the $G$-Wishart distribution based on the Metropolis Hastings algorithm and show its validity through a number of numerical experiments. We show that this method can be easily used to estimate the Deviance Information Criterion, providing a computationally inexpensive approach for model selection.
In addition, we look at the marginal likelihood of a graphical model given a set of data. This is proportional to the ratio of the posterior over the prior normalizing constant. We explore methods for the estimation of this ratio, focusing primarily on applying the Monte Carlo simulation method of path sampling. We also explore numerically the effect of the completion of the incomplete matrix $D^{\mathcal{V}}$, hyperparameter of the $G$-Wishart distribution, for the estimation of the normalizing constant.
We also derive a series of exact and approximate expressions for the Bayes Factor between two graphs that differ by one edge. A new theoretical result regarding the limit of the normalizing constant multiplied by the hyperparameter $\delta$ is given and its implications to the validity of an improper prior and of the subsequent Bayes Factor are discussed.
|
6 |
Approximation de lois impropres et applications / Approximation of improper priors and applicationsBioche, Christèle 27 November 2015 (has links)
Le but de cette thèse est d’étudier l’approximation d’a priori impropres par des suites d’a priori propres. Nous définissons un mode de convergence sur les mesures de Radon strictement positives pour lequel une suite de mesures de probabilité peut admettre une mesure impropre pour limite. Ce mode de convergence, que nous appelons convergence q-vague, est indépendant du modèle statistique. Il permet de comprendre l’origine du paradoxe de Jeffreys-Lindley. Ensuite, nous nous intéressons à l’estimation de la taille d’une population. Nous considérons le modèle du removal sampling. Nous établissons des conditions nécessaires et suffisantes sur un certain type d’a priori pour obtenir des estimateurs a posteriori bien définis. Enfin, nous montrons à l’aide de la convergence q-vague, que l’utilisation d’a priori vagues n’est pas adaptée car les estimateurs obtenus montrent une grande dépendance aux hyperparamètres. / The purpose of this thesis is to study the approximation of improper priors by proper priors. We define a convergence mode on the positive Radon measures for which a sequence of probability measures could converge to an improper limiting measure. This convergence mode, called q-vague convergence, is independant from the statistical model. It explains the origin of the Jeffreys-Lindley paradox. Then, we focus on the estimation of the size of a population. We consider the removal sampling model. We give necessary and sufficient conditions on the hyperparameters in order to have proper posterior distributions and well define estimate of abundance. In the light of the q-vague convergence, we show that the use of vague priors is not appropriate in removal sampling since the estimates obtained depend crucially on hyperparameters.
|
Page generated in 0.0675 seconds