Spelling suggestions: "subject:"truncated normal"" "subject:"runcated normal""
1 |
[en] DYNAMIC BAYESIAN MODEL FOR A TRUNCATED NORMAL / [pt] MODELO DINÂMICO BAYESIANO PARA A DENSIDADE NORMAL TRUNCADAMONICA BARROS 08 May 2006 (has links)
[pt] Nesta tese desenvolvemos um Modelo Dinâmico Bayesiano para
a densidade Normal Truncada. A estimação clássica e
estática de observações desta densidade foi desenvolvida
por A.C. Cohen nas décadas de 1950 e 1960, enquanto R. C.
Souza apresentou, em 1978, um modelo dinâmico Bayesiano
para esta densidade, no qual utilizava idéias da Teoria de
Informação. O presente trabalho estende a formulação
dinâmica Bayesiana de West, Harrinson e Migon por tratar
de observações que não pertencem à família exponencial. Ao
mesmo tempo, estendemos os resultados de Souza por não
mais supor a estacionariedade da série. Algumas séries
reais e simuladas são analisadas e, em particular,
comparamos nossos resultados com aqueles obtidos por Souza. / [en] This thesis describes a Dynamic Bayesian Model for a
Truncated Normal distribution. The classical and static
solution to the problem of finding estimators for the
parameters of the original Normal distribution was treated
by A.C. Cohen in the 1950s and 1960s R.C. Souza (1978)
described in his Doctoral thesis a Dynamic Bayesian Model
for this distribution, in which Information Theory
concepts were used. The present thesis extends the dynamic
formulation of West, Harrison and Migon by considering a
distribution which is not a member of a an Exponential
Family. Moreover, we extend the results derived by Souza
by dropping the assumptions of a steady state model. Some
real and simulated series are analyzed and, in particular,
we compare our results with those obtained by souza.
|
2 |
The effects of three different priors for variance parameters in the normal-mean hierarchical modelChen, Zhu, 1985- 01 December 2010 (has links)
Many prior distributions are suggested for variance parameters in the hierarchical model. The “Non-informative” interval of the conjugate inverse-gamma prior might cause problems. I consider three priors – conjugate inverse-gamma, log-normal and truncated normal for the variance parameters and do the numerical analysis on Gelman’s 8-schools data. Then with the posterior draws, I compare the Bayesian credible intervals of parameters using the three priors. I use predictive distributions to do predictions and then discuss the differences of the three priors suggested. / text
|
3 |
A Geometry-Based Multiple Testing Correction for Contingency Tables by Truncated Normal Distribution / 切断正規分布を用いた分割表の幾何学的マルチプルテスティング補正法Basak, Tapati 24 May 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23367号 / 医博第4736号 / 新制||医||1051(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 森田 智視, 教授 川上 浩司, 教授 佐藤 俊哉 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
4 |
ESTIMATING LEAKS IN WATER DISTRIBUTION SYSTEMS BY SEQUENTIAL STATISTICAL ANALYSIS OF CONTINUOUS FLOW READINGSNADIMPALLI, GAYATRI January 2003 (has links)
No description available.
|
5 |
Estimation of Regression Coefficients under a Truncated Covariate with Missing ValuesReinhammar, Ragna January 2019 (has links)
By means of a Monte Carlo study, this paper investigates the relative performance of Listwise Deletion, the EM-algorithm and the default algorithm in the MICE-package for R (PMM) in estimating regression coefficients under a left truncated covariate with missing values. The intention is to investigate whether the three frequently used missing data techniques are robust against left truncation when missing values are MCAR or MAR. The results suggest that no technique is superior overall in all combinations of factors studied. The EM-algorithm is unaffected by left truncation under MCAR but negatively affected by strong left truncation under MAR. Compared to the default MICE-algorithm, the performance of EM is more stable across distributions and combinations of sample size and missing rate. The default MICE-algorithm is improved by left truncation but is sensitive to missingness pattern and missing rate. Compared to Listwise Deletion, the EM-algorithm is less robust against left truncation when missing values are MAR. However, the decline in performance of the EM-algorithm is not large enough for the algorithm to be completely outperformed by Listwise Deletion, especially not when the missing rate is moderate. Listwise Deletion might be robust against left truncation but is inefficient.
|
6 |
[en] MULTIPLE IMPUTATION IN MULTIVARIATE NORMAL DATA VIA A EM TYPE ALGORITHM / [pt] UM ALGORITMO - EM - PARA IMPUTAÇÃO MÚLTIPLA DE DADOS CENSURADOSFABIANO SALDANHA GOMES DE OLIVEIRA 05 July 2002 (has links)
[pt] Construímos um algoritmo tipo EM para estimar os parâmetros
por máxima verossimilhança. Os valores imputados são
calculados pela média condicional sujeito a ser
maior (ou menor) do que o valor observado. Como a estimação
é por máxima verossimilhança, a matriz de informação
permite o cálculo de intervalos de confiança para
os parâmetros e para os valores imputados. Fizemos
experiência com dados simulados e há também um estudo de
dados reais (onde na verdade a hipótese de normalidade não
se aplica). / [en] An EM algorithm was developed to parameter estimation of a
multivariate truncate normal distribution. The multiple
imputation is evaluated by the conditional expectation
becoming the estimated values greater or lower than the
observed value. The information matrix gives the confident
interval to the parameter and values estimations.
The proposed algorithm was tested with simulated and real
data (where the normality is not followed).
|
7 |
[en] A BAESIAN APPROACH TO MODEL THE CONDITIONAL DEMAND OF ELETRIC ENERGY OF RESIDENTIAL CONSUMES / [pt] UMA ABORDAGEM BAYESIANA PARA OS MODELOS DE DEMANDA CONDICIONAL PARA O CONSUMO RESIDENCIAL DE ENERGIA ELÉTRICAANA MARIA LIMA DE FARIAS 17 March 2006 (has links)
[pt] A análise de demanda condicional (conditional demand
analysis - CDA) é um método econométrico que, aplicado ao
estudo do consumo residencial de energia elétrica, permite
estimar a quantidade de energia consumida por diferentes
aparelhos eletrodomésticos. Nessa tese, métodos bayesianos
são utilizados na estimação dos modelos CDA. A restrição
de não negatividade dos coeficientes de consumo de energia
é incorporada ao modelo através do uso da densidade normal
truncada como priori dos parâmetros. Como as densidades a
posteriori resultantes também são truncadas, métodos de
simulação estocástica cria cadeias de Markov são usados na
estimação de tais densidades. O método desenvolvido é
aplicado a um conjunto de dados fornecido pela LIGHT, uma
das concessionárias de energia do estado do Rio de
Janeiro, gerando as curvas de carga para diversos
aparelhos. / [en] Conditional demand analysis (CDA) is an econometric method
that, applied to studies of consumption of energy in the
household sector, allows us to estimate the demand of
energy for different appliances.
In this thesis, the estimation of the CDA models is made
in a Bayesian framework. The truncated normal distribution
is used as a prior of the parameters, assuring their
nonnegativity restrictions. Since the resulting
posteriors are truncated distributions too, the Gibbs
sampler is applied in the estimation of those densities.
The results obtained are applied to a dataset obtained
from LIGHT, one of the electricity utilities of Rio de
Janeiro, in order to obtain some appliances load curves.
|
8 |
[en] DATA DISAGGREGATION WITH ECOLOGICAL INFERENCE: IMPLEMENTATION OF MODELS BASED IN THE TRUNCATED NORMAL AND ON THE BINOMIAL-BETA VIA EM ALGORITHM / [es] DESAGREGACIÓN DE DATOS CON INFERENCIA ECOLÓGICA: IMPLEMENTACIÓN DE MODELOS CON BASE EN LA NORMAL TRUNCADA Y EN LA BINOMIAL-BETA VÍA ALGORITMO EM / [pt] DESAGREGAÇÃO DE DADOS COM INFERÊNCIA ECOLÓGICA: IMPLEMENTAÇÕES DE MODELOS BASEADOS NA NORMAL TRUNCADA E NA BINOMIAL-BETA VIA ALGORITMO EMROGERIO SILVA DE MATTOS 13 March 2001 (has links)
[pt] Inferência ecológica reúne o conjunto de procedimentos
estatísticos para se prever dados desagregados quando só
estão disponíveis dados agregados. Duas novas metodologias
propostas recentemente vêm motivando novos desenvolvimentos
na área: o modelo baseado na normal bivariada truncada
(MNBT) e o modelo hierárquico binomial-beta (MHBB). A tese
reavalia estas metodologias e explora implementações
computacionais mais eficientes através do Algoritmo EM e
uma de suas extensões, o Algoritmo ECM. Comparando-se com
métodos de quase-Newton, uma versão estável, porém mais
lenta, é obtida para implementação do MNBT e uma versão
estável e mais rápida é obtida para o MHBB. Adicionalmente,
as metodologias são comparadas em termos de suas
capacidades preditivas através de um extenso experimento de
Monte Carlo e da aplicação sobre bases de dados reais
selecionadas. A superioridade do MNBT se evidencia na
maioria dos casos. Problemas de modelagem do MHBB são
corrigidos e é apontada uma limitação assintótica das
previsões produzidas por este último. / [en] Ecological inference comprises the set of statistical
procedures for the prediction of
disaggegate data when data are available only in aggregate
form. Two recently
proposed approaches have motivated new developments in the
field: the model based
on a truncated bivariate normal (MNBT) and the hierchical
binomial-beta model
(MHBB). The thesis reevaluates these approaches and
explores more efficient
computational implementations via the EM Algorithm and one
of its extensions, the
ECM Algorithm. As compared to quasi-Newton algorithms, a
stable yet slower
version is obtained for the implementation of the MNBT, and
a stable and faster
version is obtained for the MHBB. The methodologies are
compared in predictive
terms by means of an extensive Monte Carlo experiment and
of the application to real
datasets. The superiority of the MNBT is evident in the
majority of cases. Modeling
mistakes of the MHBB are corrected and an asymptotic
restriction of the predictions
made with this model is pointed. / [es] La inferencia ecológica reúne un conjunto de procedimentos
estatísticos para prever datos desagregados cuando solo
están disponibles datos agregados. Dos nuevas metodologías
propuestas recientemente han motivando nuevos desarrollos
en el área: el modelo que tiene como base la normal
bivariada truncada (MNBT) y el modelo jerárquico binomial-
beta (MHBB). La tesis reevalúa estas metodologías y explora
implementaciones computacionales más eficientes a través
del Algoritmo EM y una de sus extensiones, el Algoritmo
ECM. Estos métodos se comparan con métodos de quase-
Newton. Se obtiene una versión estable aunque más lenta,
para la implementación de MNBT y una versión estable y más
rápida para el MHBB. Adicionalmente, se comparan las
metodologías en función de sus capacidades predictivas a
través de un extenso experimento de Monte Carlo. Em la
mayor parte de los casos se observa superioridad del MHNBT.
Se corrigen problemas de modelaje del MHBB apuntadando uma
limitación asintótica de las previsiones producidas por
este último.
|
9 |
Família composta Poisson-Truncada: propriedades e aplicaçõesARAÚJO, Raphaela Lima Belchior de 31 July 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-04-05T14:28:43Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dissertacao_Raphaela(CD).pdf: 1067677 bytes, checksum: 6d371901336a7515911aeffd9ee38c74 (MD5) / Made available in DSpace on 2016-04-05T14:28:43Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dissertacao_Raphaela(CD).pdf: 1067677 bytes, checksum: 6d371901336a7515911aeffd9ee38c74 (MD5)
Previous issue date: 2015-07-31 / CAPES / Este trabalho analisa propriedades da família de distribuições de probabilidade Composta N e propõe a sub-família Composta Poisson-Truncada como um meio de compor distribuições de probabilidade. Suas propriedades foram estudadas e uma nova distribuição foi investigada: a distribuição Composta Poisson-Truncada Normal. Esta distribuição possui três parâmetros e tem uma flexibilidade para modelar dados multimodais. Demonstramos que sua densidade é dada por uma mistura infinita de densidades normais em que os pesos são dados pela função de massa de probabilidade da Poisson-Truncada. Dentre as propriedades exploradas desta distribuição estão a função característica e expressões para o cálculo dos momentos. Foram analisados três métodos de estimação para os parâmetros da distribuição Composta Poisson-Truncada Normal, sendo eles, o método dos momentos,
o da função característica empírica (FCE) e o método de máxima verossimilhança (MV)
via algoritmo EM. Simulações comparando estes três métodos foram realizadas e, por fim, para ilustrar o potencial da distribuição proposta, resultados numéricos com modelagem de dados reais são apresentados. / This work analyzes properties of the Compound N family of probability distributions and
proposes the sub-family Compound Poisson-Truncated as a means of composing probability distributions. Its properties were studied and a new distribution was investigated: the Compound Poisson-Truncated Normal distribution. This distribution has three parameters and has the flexibility to model multimodal data. We demonstrated that its density is given by an infinite mixture of normal densities where in the weights are given by the Poisson-Truncated probability mass function. Among the explored properties of this distribution are the characteristic function end expressions for the calculation of moments. Three estimation methods were analyzed for the parameters of the Compound Poisson-Truncated Normal distribution, namely, the method of moments, the empirical characteristic function (ECF) and the method of maximum likelihood (ML) by EM algorithm. Simulations comparing these three methods were performed and, finally, to illustrate the potential of the proposed distribution numerical results with real data modeling are presented.
|
Page generated in 0.0406 seconds