• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 34
  • 22
  • 11
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 255
  • 255
  • 89
  • 46
  • 44
  • 36
  • 34
  • 33
  • 32
  • 28
  • 25
  • 20
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Synthesis And Characterization Of New Conducting Polymer- Nano Particle Composites

Eroglu, Esra 01 January 2013 (has links) (PDF)
In this study, conjugated monomers containing fluorene units / 2-(9,9-dihexyl-2-(thiophen-2-yl)-9H-fluoren-7-yl)thiophene (TFT) and 5-(9,9-dihexyl-2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluoren-7-yl)-2,3dihydrothieno[3,4b ][1,4] dioxine (EFE) were synthesized on the basis of donor-acceptor-donor approach and their electrochemical polymerization were achieved via potential cycling. Optical and electrochemical properties of their corresponding polymers, poly(2-(9,9-dihexyl-2-(thiophen-2-yl)-9H-fluoren-7-yl)thiophene) PTFT, and poly(5-(9,9-dihexyl-2-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluoren-7-yl)-2,3dihydrothieno[3,4b ][1,4] dioxine) PEFE, were investigated and it was found that polymer films exhibited quasi-reversible redox behavior (Epox= 1.10 V for PTFT, Epox = 0.70 V and 1.00 V for PEFE) accompanied with a reversible electrochromic behavior, yellow to dark green for PTFT, yellow to parliament blue for PEFE. Their band gap values (Eg) were found to be 2.36 eV and 2.26 eV for PTFT and PEFE, respectively. Furthermore, gold nanoparticles (AuNP) were prepared and their interaction with polymer films, PTFT and PEFE, were investigated using spectroscopic techniques. The fluorescence properties of the polymers and their composites, prepared by the interaction of AuNP with polymers, were also investigated.
112

Design and synthesis of and π-stacked conjugated oligomers and polymers

Jagtap, Subodh Prakash 16 March 2012 (has links)
Interchain interactions between π-systems have a strong effect on the properties of conjugated organic materials that find application in devices such as light emitting diodes (OLEDs), organic photovoltaics (OPVs), and field effect transistors (FETs). We have prepared covalently-stacked oligo(1,4-phenylene ethynylene)s and oligo(1,4-phenylene vinylene)s to study the influence of chain-chain interactions on the electronic structure of closely packed conjugated units. These serve as models for segments of conjugated materials in thin film devices. Extension of this concept has allowed us to prepare multi-tiered systems that display the influence of pi-stacking. The stacked architectures were prepared by multi-step synthesis of the scaffolds, followed by metal-catalyzed cross coupling reactions (Sonogashira, Heck, Suzuki couplings) to incorporate the conjugated oligomers. The optical and electrochemical properties of these stacked compounds and polymers were compared to their unstacked linear counterparts. These studies provide a platform for the exploration of the nature of charge carriers and excitons in a broad class of materials that have significant potential in addressing challenges in power generation, lighting and electronics.
113

Intrinsically Functionalized Silk (Bombyx Mori)

Åberg, Gabriel January 2013 (has links)
The goal of the thesis is to incorporate materials with either fluorescent or conductive properties in silk fibers, by feeding silkworms with a diet containing these materials. To achieve this, one would have to breed (rear) silkworm from eggs into larvaes, then to feed the silkworms with this special diet containing fluorescent or conductive materials. Samples of silk were then collected either from spun cocoons or via removing the silk producing organs (silk glands) from the silkworms via dissection. The samples were then analyzed with absorbance spectrometer, spectrofluorometer or via photoluminesecent measurement to determine if any materials had been incorporated into the silk fibers.   Silkworms were successfully reared from eggs up to moths, once the silkworm larvae had grown enough in size their diet were switches from their regular food (silkworm chow) to food containing conjugated molecules or polymers with fluorescent or conductive properties. A total of 14 materials were tested. One material gave a clear positive result and that was from the fluorescent compound Rhodamine B. Other fluorescent materials, Nile red and POWT yielded some results indicating their presence in the silk but the results were not conclusive. The rest of the materials all failed with being incorporated within the silk fibers; this was due to their lethality, size, lack of zwitterionic properties and such.  The properties of the materials are of great importance for the uptake process, where a small zwitterionic molecule has a great change of being taken up and incorporated in the silk fibers. Whereas a big materials such as a polymer without any zwitterionic will in most cases just follow through the food in the digestive track without any uptake.
114

A Molecularly Switchable Polymer-Based Diode / En Molekylärt Switchbar Polymerbaserad Diod

Hultell Andersson, Magnus S. January 2002 (has links)
Despite tremendous achievements, the field of conjugated polymers is still in its infancy, mimicking the more mature inorganic, i.e. silicon-based, technologies. We may though look forward to the realisation of electronic and electrochemical devices with exotic designs and device applications, as our knowledge about the fundamentals of these promising materials grow ever stronger. My own contribution to this development, originating from an idea first put forward by my tutor, Professor Magnus Berggren, is a design for a switchable polymer-based diode. Its architecture is based on a modified version of a recently developed highly-rectifying diode,12 where an intermediate molecular layer has been incorporated in the bottom contact. Due to its unique ability to switch its internal resistance during operation, this thin layer can be used to shift the amount of (forward) current induced into the rectifying structure of the device, and by doing so shift its electrical characteristics between an insulating and a rectifying behaviour (as illustrated below). Such a component should be of great commercial interest in display technologies since it would, at least hypothetically, be able to replace the transistors presently used to address the individual matrix elements. However, although fairly simple in theory, it proved to be quite the challenge to fabricate the device structure. Machinery errors and contact problems aside, several process routes needed to be evaluated and only a small fraction of the batches were successful. In fact, it was not until the very last day that I detected the first indications that the concept might actually work. Hence, several modifications might still be necessary to undertake in order to get the device to work properly.
115

Polymer Electrochromism on PEDOT coated fibres and design of electrochromic pixel using coated fibres.

Lakshmanan, Nethaji, Rangasamy, Logarasu January 2008 (has links)
Polymer electrochromism on PEDOT coated fibres was successfully achieved. The electrochromic property of the PEDOT polymer is an excellent property. This feature gives way to many more research works at present and in the future also. The electrochromic property of the PEDOT polymer is utilized in this thesis work to design an electrochromic display pixel. The polymer coating over the fibres were obtained by using In-situ polymerization technique. The coated-fibres were used to design a display-pixel. Electrochemistry is performed successfully on the designed pixel to study electrochromism over the pixels. An electrochemical fibre transistor is designed successfully using the polymer coated fibres. / Polymer Electrochromism on PEDOT coated fibres
116

Phenyleneethynylenes: Structure, Morphology and Photophysical Properties of Novel Pi Systems

Wilson, James Norbert 02 December 2004 (has links)
The syntheses of novel poly(paraphenyleneethynylene)s, PPEs, and poly(aryleneeethynylene)s, PAEs, as well as hybrid poly(paraphenyleneethynylene)- poly(paraphenylenevinylene)s, PPE-PPVs, are presented. Fluorescent PPEs decorated with biologically relevant ligands are utilized in model biosensing schemes. PPE-PPV hybrids, as well as their highly emissive oligomeric, cruciform model compounds are studied in an effort to modify the bandgap of the parent PPE backbone. Improved hole and electron injection capabilities are demonstrated with these hybrid conjugated materials. Structural variation and morphological effects of PPEs, PPE-PPVs and model compounds are studied to elucidate the effects upon the photophysical properties of the emissive materials.
117

Grafted and Crosslinkable Polyphenyleneethynylene: Synthesis, Properties and Their Application

Wang, Yiqing 28 November 2005 (has links)
This thesis presents the first reported grafted PPE - polycaprolactone-g-PPE; the first PPE based sensing model: biotinylated grafted PPE/streptavidin coated sphere; the first photocrosslinkable PPE ¨C allyloxy PPE; and the new mechanism which demonstrates morphology control on a single molecular level
118

Synthesis Of Benzimidazole Containing Donor Acceptor Electrochromic Polymers

Akpinar, Hava Zekiye 01 February 2011 (has links) (PDF)
ABSTRACT SYNTHESIS OF BENZIMIDAZOLE CONTAINING DONOR ACCEPTOR ELECTROCHROMIC POLYMERS Akpinar, Hava Zekiye M. Sc., Department of Chemistry Supervisor: Prof. Dr. Levent Toppare February 2011, 60 pages Donor-acceptor-donor (DAD) type benzimidazole (BIm) and 3,4-ethylenedioxythiophene (EDOT) bearing monomers (4-(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3 dihydrothieno[3,4b][1,4] dioxin-7-yl)-2-benzyl-1H-benzo[d]imidazole (M1), 2,4-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-1H-benzo[d]imidazole (M2) and 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-ferrocenyl-1H-benzo[d]imidazole (M3)) were synthesized and electrochemically polymerized. Pendant group at 2-C position of the imidazole ring was functionalized with phenyl (P1), EDOT (P2) and ferrocene (P3) in order to observe substituent effect on electrochemical and electrochromic properties of corresponding polymers. Spectroelectrochemical results showed that different pendant groups resulted in polymers with slightly different optical band gaps (1.75, 1.69 and 1.77 eV respectively) and different number of achievable colored states. Optoelectronic performance were reported in detail. Keywords: Benzimidazole, EDOT, Donor-Acceptor Type Polymers, Electrochromism, Conjugated Polymers.
119

Synthesis Of Benzimidazole Containing Donor Acceptor Electrochromic Polymers

Akpinar, Hava Zekiye 01 February 2011 (has links) (PDF)
ABSTRACT SYNTHESIS OF BENZIMIDAZOLE CONTAINING DONOR ACCEPTOR ELECTROCHROMIC POLYMERS Akpinar, Hava Zekiye M. Sc., Department of Chemistry Supervisor: Prof. Dr. Levent Toppare February 2011, 60 pages Donor-acceptor-donor (DAD) type benzimidazole (BIm) and 3,4-ethylenedioxythiophene (EDOT) bearing monomers (4-(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3 dihydrothieno[3,4b][1,4] dioxin-7-yl)-2-benzyl-1H-benzo[d]imidazole (M1), 2,4-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-1H-benzo[d]imidazole (M2) and 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-7-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-2-ferrocenyl-1H-benzo[d]imidazole (M3)) were synthesized and electrochemically polymerized. Pendant group at 2-C position of the imidazole ring was functionalized with phenyl (P1), EDOT (P2) and ferrocene (P3) in order to observe substituent effect on electrochemical and electrochromic properties of corresponding polymers. Spectroelectrochemical results showed that different pendant groups resulted in polymers with slightly different optical band gaps (1.75, 1.69 and 1.77 eV respectively) and different number of achievable colored states. Optoelectronic performance were reported in detail.
120

Soluble Alkyl Substituted Poly(3,4propylenedioxyselenophne)s: A Novel Platform For Optoelectronic Materials

Atak, Samed 01 March 2011 (has links) (PDF)
In this study, optical and electrochemical properties of regioregular and soluble alkyl substituted propylenedioxyselenophene based electrochromic polymers, namely poly(3,3-dibutyl-3,4-dihydro-2H-selenopheno[3,4-b][1,4]dioxephine) (PProDOS-C4), poly(3,3-dihexyl-3,4-dihydro-2H-selenopheno[3,4-b][1,4]dioxephine) (PProDOS-C6), and poly(3,3-didecyl-3,4-dihydro-2H-selenopheno[3,4-b][1,4]dioxephine) (PProDOS-C10), which were synthesized via electrochemical polymerization, were investigated. It is noted that these unique polymers have low band gaps (1.54 &ndash / 1.64 eV) and they are exceptionally stable under ambient atmospheric conditions. For example, polymer films retained 84-96 % of their electroactivity after five thousands cycles. The percent transmittance of PProDOS-Cn (n= 4, 6, 10) films found to be between 55-59 %. Furthermore, these novel soluble PProDOS-Cn polymers showed electrochromic behavior: a color change form pure blue (L = 57.31, a = -13.18, b = - 42.68) to highly transparent state (L = 91.74, a = 2.52, b = -1.30) state in a low switching time (1.0 s) during oxidation with high coloration efficiencies (328 &ndash / 864 cm2/C) when compared to their close analogues.

Page generated in 0.107 seconds