Spelling suggestions: "subject:"conjunto dde perímetro finitos"" "subject:"conjunto dde perãmetro finitos""
1 |
O problema de Bernstein / The Bernstein problemMarlon de Oliveira Gomes 16 August 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O problema de Bernstein clÃssico, resolvido por S. Bernstein em 1915-1917 em seu artigo [12], pergunta se existe um grÃfico mÃnimo completo em R3 alÃm do plano. Bernstein mostrou que a resposta para este problema à nÃo, utilizando mÃtodos analÃticos para o estudo de equaÃÃes de curvatura prescrita. Veremos aqui como este problema està relacionado com a aplicaÃÃo de Gauss deste grÃfico, e como conseqÃÃncia desta relaÃÃo iremos generalizar este teorema para uma classe de superfÃcies maior (nÃo necessariamente grÃficos), seguindo a prova dada por R. Osserman em [51]. Veremos a seguir generalizaÃÃes deste teorema em dimensÃes maiores, seguindo essencialmente os mÃtodos introduzidos Por W. Fleming em [31], e refinados posteriormente por E. De Giorgi, em [20], F. Almgren, em [6], e J. Simons, em [62], que resolvem o problema para grÃficos em Rn, n < 9 mostrando que o Ãnico grÃfico mÃnimo completo nesses espaÃos à o hiperplano. Mostraremos tambÃm que em dimensÃo n ≥ 9, à possÃvel construir grÃficos mÃnimos completos em Rn, seguindo a prova apresentada por E. Bombieri, E. Di Giorgi e E. Giusti em [14]. Por fim, concluÃmos com uma extensÃo do teorema de Bernstein para a classe das subvariedades estÃveis com respeito à segunda variaÃÃo de volume, sob certas condiÃÃes de crescimento de curvatura ou volume, e investigaremos ainda o caso que a variedade ambiente nÃo à o espaÃo euclidiano. / The classical Bernstein problem, solved by S. Bernstein in 1915-1917 in his article [12], asks if there is a complete minimal graph in R3 besides the plane. Bernstein showed that the answer to this question is no using analytical methods for study of equations of prescribed curvature. We will see here how this problem is related to the Gauss map of the graph, and as consequence of this relationship we generalize this theorem to a larger class of surfaces (not necessarily graphs), following the proof given by R. Osserman in [51]. We will see next generalizations of this theorem in higher dimensions, following essentially the methods introduced by W. Fleming in [31], and later refined by E. De Giorgi in [20], F. Almgren in [6] and J. Simons in [62]. In fact, they solve the problem for graphs in Rn, n < 9, namely they prove that the only complete minimal graph in these espaces is the hyperplane. Following the proof given by E. Bombieri, E. De Giorgi and E. Giusti in [14], we also show that, in dimension n ≥ 9, it is possible to construct complete minimal graphs in Rn. At last, we conclude with an extension of Bernsteinâs theorem to the class of submanifolds stable with respect to the second variation of volume, under certain conditions of curvature and volume growth, and yet we investigate the case in which the ambient manifold is not the Euclidean space.
|
Page generated in 0.0787 seconds