Spelling suggestions: "subject:"conjunto dde rotação"" "subject:"conjunto dee rotação""
1 |
Dynamics of homeomorphisms on surfaces of genus greater than one / Dinâmica de homeomorfismos em superfícies de gênero maior do que umJacóia, Bruno de Paula 03 August 2018 (has links)
We consider closed orientable surfaces S of genus greater than one and homeomorphisms f homotopic to the identity. A set of hypotheses is presented, called fully essential system of curves, and it is shown that under these hypotheses, the natural lift of f to the universal cover of S (the Poincaré disk), has complicated and rich dynamics. We also show that the homological rotation set of such a f is a compact convex set with maximal dimension and all points in its interior are realized by compact f-invariant sets, periodic orbits in the rational case. / Consideramos superfícies fechadas orientáveis S de gênero maior do que um e homeomorfismos f homotópicos a identidade. Apresentamos um conjunto de hipóteses, chamado sistema de curvas totalmente essencial, e mostramos que sob essas hipóteses, o levantamento natural de f para o recobrimento universal de S (o disco de Poincaré), tem uma dinâmica rica e complicada. Mostramos também que o conjunto de rotação homológico de f é um subconjunto compacto convexo de dimensão máxima e todos os pontos no seu interior são realizados por conjuntos compactos f-invariantes, órbitas periódicas no caso racional.
|
2 |
Ergodicidade e homeomorfismos anulares do toro / Ergodicity and annular homeomorphism of the torusBortolatto, Renato Belinelo 22 June 2012 (has links)
Seja f : T2 -> T2 um homeomorfismo homotópico a identidade e F : R2 -> R2 um levantamento de f tal que seu conjunto de rotação rho(F) é um segmento vertical não degenerado contido em 0 × R. Provamos que se f é ergódico com respeito a medida de Lebesgue no toro e se o vetor de rotação médio (com respeito a mesma medida) é da forma (0, alpha) para alpha em R\\Q então existe M > 0 tal que |(Fn (x) - x)1| <= M para todo x em R2 e n em Z (onde (.)1 :R2 -> R é definida por (x,y)1 =x). / Let f : T2 -> T2 be a homeomorphism homotopic to the identity and F : R2 -> R2 a lift of f such that the rotation set rho(F) is a non-degenerated vertical line segment contained in 0 × R. We prove that if f is ergodic with respect to the Lebesgue measure on the torus and the average rotation vector (with respect to same measure) is of the form (0, alpha) for alpha in R\\Q then there exists M > 0 such that |(Fn (x) - x)1| <= M for all x in R2 and n in Z (where (.)1 :R2 -> R is defined by (x, y)1 = x).
|
3 |
Ergodicidade e homeomorfismos anulares do toro / Ergodicity and annular homeomorphism of the torusRenato Belinelo Bortolatto 22 June 2012 (has links)
Seja f : T2 -> T2 um homeomorfismo homotópico a identidade e F : R2 -> R2 um levantamento de f tal que seu conjunto de rotação rho(F) é um segmento vertical não degenerado contido em 0 × R. Provamos que se f é ergódico com respeito a medida de Lebesgue no toro e se o vetor de rotação médio (com respeito a mesma medida) é da forma (0, alpha) para alpha em R\\Q então existe M > 0 tal que |(Fn (x) - x)1| <= M para todo x em R2 e n em Z (onde (.)1 :R2 -> R é definida por (x,y)1 =x). / Let f : T2 -> T2 be a homeomorphism homotopic to the identity and F : R2 -> R2 a lift of f such that the rotation set rho(F) is a non-degenerated vertical line segment contained in 0 × R. We prove that if f is ergodic with respect to the Lebesgue measure on the torus and the average rotation vector (with respect to same measure) is of the form (0, alpha) for alpha in R\\Q then there exists M > 0 such that |(Fn (x) - x)1| <= M for all x in R2 and n in Z (where (.)1 :R2 -> R is defined by (x, y)1 = x).
|
Page generated in 0.0743 seconds