1 |
Fragmentation in stream networks: quantification, consequences, and implications to decline of native fish faunaPerkin, Joshuah Shantee January 1900 (has links)
Doctor of Philosophy / Department of Biology / Keith B. Gido / Habitat fragmentation and loss threaten global biodiversity, but organism responses to changing habitat availability are mediated by structural properties of their habitats. In particular, organisms inhabiting dendritic landscapes with hierarchically arranged branches of habitat tend to have limited access to some patches even in the absence of fragmentation. Consequently, organisms inhabiting dendritic landscapes such as streams respond strongly to fragmentation. Using a combination of meta-analysis, field observations, and ecological network modeling I show that stream fishes respond to fragmentation in predictable ways. First, I addressed how dams and stream dewatering have created a mosaic of large river fragments throughout the Great Plains. Using a geographic information system and literature accounts of population status (i.e., stable, declining, extirpated) for eight “pelagic-spawning” fishes, I found stream fragment length predicted population status (ANOVA, F2,21 = 30.14, P < 0.01) and explained 71% of reported extirpations. In a second study, I applied a new measure of habitat connectivity (the Dendritic Connectivity Index; DCI) to 12 stream networks in Kansas to test the DCI as a predictor of fish response to fragmentation by road crossings. Results indicated fish communities in stream segments isolated by road crossings had reduced species richness (alpha diversity) and greater dissimilarity (beta diversity) to segments that maintained connectivity with the network, and the DCI predicted patterns in community similarity among networks (n = 12; F1,10 = 19.05, r2 = 0.66, P < 0.01). Finally, I modeled fish distributions in theoretical riverscapes to test for mechanistic linkages between fragmentation and local extirpations. Results suggested the number of small fragments predicted declines in patch occupancy, and the magnitude of change in occupancy varied with dispersal ability (“high” dispersers responded more strongly than “low” dispersers). Taken together, these works show context-dependencies in fish responses to fragmentation, but a unifying theme is that small fragments contribute to attenuated biodiversity. Moreover, the predictable manner in which stream fish react to fragmentation will aid in biodiversity conservation by revealing potential responses to future scenarios regarding changes to habitat connectivity.
|
2 |
The influence of fire and grazing on tallgrass prairie streams and herpetofaunaLarson, Danelle Marie January 1900 (has links)
Doctor of Philosophy / Division of Biology / Walter K. Dodds / Tallgrass prairie evolved with fire-grazer interactions. Fire and grazing are vital processes for maintaining grasslands and cattle production, and therefore will be continued as land management schemes. The effects of fire and grazers on prairie streams are understudied, but may significantly influence stream ecology.
This dissertation examined how prescribed burning, bison grazing, and patch-burn grazing (by cattle) influence water quality, stream biota, and riparian amphibians and reptiles at Konza Prairie, Kansas, or Osage Prairie, Missouri. Using Global Positioning System, we monitored bison and cattle distribution throughout watersheds. The immediate effects of prescribed burning were examined at both Konza and Osage Prairies. The impacts of bison on water quality were determined by using a long-term dataset from Konza Prairie and compared watersheds with and without bison. Amphibian and reptile assemblages were monitored for two years at Osage, and assemblage data were analyzed using redundancy analysis, permuted analysis of variance, and occupancy modeling. A patch-burn grazing experiment occurred for 5 years at Osage (2 years pretreatment data and 3 years of treatments) and was analyzed using a before-after, control-impact design. Prescribed burning had minimal effects on water chemistry. At Konza Prairie, bison did not alter water quality likely because they spent negligible time (<5%) in streams. Contrarily, cattle at Osage Prairie significantly increased stream concentrations of total suspended solids, nutrients, Escherichia coli bacteria, algal biomass, and primary production. Unlike bison, cattle spent significant time (~21%) in streams if allowed access to riparian zones. In watersheds with cattle excluded from streams by riparian fencing, water quality contaminant concentrations increased significantly, but not to the magnitude of unfenced streams. Amphibian abundance and richness were not different among patch types; instead, they were restricted to specific basins. However, reptiles displayed preference for certain patch-types, and had the highest abundance and richness in watersheds with fire and grazing.
These results have implications for natural resource management. Riparian fencing of cattle may be a useful practice in areas where water resource protection is the priority. However, overland flow may alter water quality in watersheds with grazers despite fencing. Land managers will need to define management objectives and accept trade-offs in water quality, amphibian and reptile habitat, and cattle production.
|
3 |
Spatiotemporal response of aquatic native and nonnative taxa to wildfire disturbance in a desert stream networkWhitney, James E. January 1900 (has links)
Doctor of Philosophy / Department of Biology / Keith B. Gido / Many native freshwater animals are imperiled as a result of habitat alteration, species introductions and climate-moderated changes in disturbance regimes. Native conservation and nonnative species management could benefit from greater understanding of critical factors promoting or inhibiting native and nonnative success in the absence of human-caused ecosystem change. The objectives of this dissertation were to (1) explain spatiotemporal patterns of native and nonnative success, (2) describe native and nonnative response to uncharacteristic wildfire disturbance, and (3) test the hypothesis that wildfire disturbance has differential effects on native and nonnative species. This research was conducted across six sites in three reaches (tributary, canyon, and valley) of the unfragmented and largely-unmodified upper Gila River Basin of southwestern New Mexico. Secondary production was measured to quantify success of native and nonnative fishes prior to wildfires during 2008-2011. Native fish production was greater than nonnatives across a range of environmental conditions, although nonnative fish, tadpole, and crayfish production could approach or exceed that of native macroinvertebrates and fishes in canyon habitats, a warmwater tributary, or in valley sites, respectively. The second objective was accomplished by measuring biomass changes of a warmwater native and nonnative community during 2010-2013 before and after consecutive, uncharacteristic wildfires. Several native insect and fish taxa decreased after both wildfires, whereas nonnative decreases were most pronounced for salmonids and more limited for other taxa. Finally, effects of uncharacteristic wildfires followed by extreme flooding on metapopulations of native and nonnative fishes were contrasted during 2008-2013. Wildfire and flood disturbances increased extinction probabilities of all native fishes while leaving many nonnative fishes unaffected. These findings revealed a swinging pendulum of native and nonnative success, wherein wildfire disturbance resulted in a pendulum swing in favor of nonnatives. Ensuring the pendulum swings back in favor of natives will be facilitated by management activities that decrease wildfire size and intensity and maintain inherent ecosystem resilience.
|
4 |
Genomic differentiation of big bluestem (Andropogon gerardii) along the Great Plains’ environmental gradientGray, Miranda M. January 1900 (has links)
Master of Science / Department of Plant Pathology / Eduard D. Akhunov / Loretta C. Johnson / Big bluestem (Andropogon gerardii Vitman) is an ecologically dominant grass of the North American grasslands with precipitation-dependent productivity. However, climatic predictions for big bluestem’s dominant range in the Great Plains include increased periods of drought. The main objectives of this research were to determine the extent of neutral and non-neutral genetic differentiation and diversity among putative big bluestem ecotypes using amplified fragment length polymorphism (AFLP) markers. This is the first study of both neutral and non-neutral genetic diversity of big bluestem which also includes source populations of well-described ecotypes studied in reciprocal common gardens. A total of 378 plants were genotyped from 11 source prairies, originating from one of three ecoregions (Central Kansas, Eastern Kansas, and Illinois). Using two AFLP primer sets, 387 polymorphic markers (error rate 9.18%) were found. Un-rooted neighbor joining tree and principle-component analyses showed continuous genetic differentiation between Kansas and Illinois putative ecotypes, with genetic overlap occurring between Kansas ecotypes. Analysis of molecular variance showed high diversity within-prairie sites (80%) relative to across-prairies (11%), and across- ecoregions (9%) (p<0.001). Within-prairie genetic diversity levels were similar among ecoregions (84-92%), with the highest genetic variation maintained in Illinois prairies (92%). Population structure analyses supported K=6 genetic clusters across the environmental gradient, with Kansas prairies belonging to three main genetic groups, and Illinois prairies having largely divergent allele frequencies from Kansas prairies. Interestingly, BAYESCAN analysis of the three putative ecotypes identified eight F[subscript]ST-outlier AFLP loci under potential diversifying selection. Frequency patterns of loci under diversifying selection were further linked to geo-environmental descriptors including precipitation, temperature severity, diurnal temperature variation, prairie location, and elevation. The observed allele frequency divergence between Kansas and Illinois ecotypes suggests tallgrass restorations should consider possible maladaptation of non-local ecotypes and genetic swamping. However, high within-prairie genetic variation may help individual big bluestem populations withstand climatic variability.
|
5 |
Apparent survival, dispersal, and abundance of black-tailed prairie dogsGoldberg, Amanda R. January 1900 (has links)
Master of Science / Department of Biology / Jack F. Cully, Jr. / Black-tailed prairie dogs (Cynomys ludovicianus) are a species of management and conservation concern. Prairie dogs have lost both habitat and occupied area due to plague, which is caused by the bacterium Yersinia pestis, pest control, and habitat conversion to agricultural land. Our goals were to estimate survival rates and dispersal rates, and to compare methods for
estimating abundance of black-tailed prairie dogs for both management and conservation. We
trapped black-tailed prairie dogs at four small National Parks from April 2009 through August
2011. Prairie dogs were trapped and marked for two trapping sessions per year in order to
estimate seasonal rates of apparent survival. Apparent survival rates were estimated using the
package RMark in R to construct models for program MARK. We found estimates to vary
according to field site, sex, year, and season (summer or winter). Possible reasons for the
differences in survivorship among sites could be presence of disease, quality of forage,
predation, or frequency of dispersal. Visual counts were also conducted each trapping session
beginning in April of 2010 to estimate abundance. Mark-recapture, mark-resight, and visual counts were compared to determine which method would be the most effective for estimating
abundance of prairie dogs. We found mark-resight to produce the most precise estimates of
abundance. While it costs more money to conduct a mark-resight estimate than visual counts
because of repeated sessions, they produced significantly different results from one another 75% of the time, which was especially apparent on sites that had some form of visual barriers such as tall vegetation and uneven ground. However, if further information is needed in terms of sex
ratios, age ratios, or the exact number of prairie dogs, then mark-recapture is the only method that can be used. Land managers need to address the level of accuracy needed, topography, and vegetation height before choosing which sampling method is best for the prairie dog towns in question. Finally, we looked at rates of intercolony and intracolony dispersal by placing 149 VHF collars and 6 GPS collars on prairie dogs at three colonies. Intracolony dispersal was also monitored through visual observation and trapping records over the three years of the study. We found 23 intracolony and eight intercolony dispersal events. Combined, these three studies offer insight not only into monitoring of prairie dog populations but also potential influence by plague both within and among colonies of prairie dogs.
|
6 |
A historical record of land cover change of the lesser prairie-chicken range in KansasSpencer, David A. January 1900 (has links)
Master of Science / Department of Geography / Melinda Daniels / The Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is a prairie grouse of conservation concern in the Southern Great Plains. In response to declining population numbers and ongoing threats to its habitat, the Lesser Prairie-Chicken was listed as threatened under the Endangered Species Act in May 2014. In western Kansas, the Lesser Prairie-Chicken occupies the Sand Sagebrush Prairie, Mixed-grass Prairie, and Short-grass/CRP Mosaic Ecoregions. Since the beginning of the 20th century, the overall range and population has declined by 92% and 97% respectively. Much of this decline is attributed to the loss and fragmentation of native grasslands throughout the Lesser Prairie-Chicken range. Whereas much of the loss and degradation of native grassland have been attributed to anthropogenic activities such as conversion of grassland to cropland and energy exploration, federal legislation since the 1980s to convert cropland on highly erodible soils to perennial grasses through the U.S. Department of Agriculture (USDA) Conservation Reserve Program (CRP) may curtail or reverse these trends. My objective was to document changes in the areal extent and connectivity of grasslands in the identified Lesser Prairie-Chicken range in Kansas from the 1950s to 2013 using remotely sensed data. I hypothesized that the total amount of grassland decreased between the 1950’s and 2013 because of an increase in agricultural practices, but predicted an increase of grassland between 1985 and 2013 in response to the CRP. To document changes in grassland, land cover maps were generated through spectral classification of LANDSAT images and visual analysis of aerial photographs from the Army Map Service and USDA Farm Service Agency. Landscape composition and configuration were assessed using FRAGSTATS to compute a variety of landscape metrics measuring changes in the amount of grassland present as well as changes in the size and configuration of grassland patches. Since 1985, the amount of grassland in the Lesser Prairie-Chicken range in Kansas has increased by 210,9963.3 ha, a rise of 11.9%, while the mean patch size and area-weighted mean patch size of grassland increased 18.2% and 23.0% respectively, indicating grassland has become more connected during this time in response to the CRP. Prior to the implementation of CRP, the amount of grassland had been decreasing since 1950, as 66,722.0 ha of grassland was converted to croplands. The loss of grassland had a considerable effect on the patch size of grasslands, as mean patch size and area-weighted mean patch size decreased by 8.8% and 11.1% respectively. The primary driver of grassland loss between 1950 and 1985 was the emergence of center pivot irrigation, which had its greatest impact in western and southwestern parts of the range in Kansas. In particular, while the amount of grassland in Range 5, a region of the Lesser Prairie-Chicken range found in southwest Kansas, has increased overall since the 1950s by 4.7%, the area-weighted mean patch size has decreased by 53.0% in response to center pivot irrigation fragmenting the landscape. While the CRP has been successful in increasing and connecting grassland throughout the Lesser Prairie-Chicken range to offset the loss of grassland since the 1950s, continuation of the CRP faces an uncertain future in the face of rising commodity prices, energy development, and reduction in program scope leaving open the possibility that these areas that have created habitat for Lesser Prairie-Chickens could be lost. As time progresses, a reduction in the scope of the CRP would reduce the amount of habitat available to Lesser Prairie-Chickens, threatening the persistence of their population.
|
Page generated in 0.1079 seconds