• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Covariant Symplectic Structure And Conserved Charges Of New Massive Gravity

Alkac, Gokhan 01 September 2012 (has links) (PDF)
We show that the symplectic current obtained from the boundary term, which arises in the first variation of a local diffeomorphism invariant action, is covariantly conserved for any gravity theory described by that action.Therefore, a Poincar&eacute / invariant two-form can be constructed on the phase space, which is shown to be closed without reference to a specific theory.Finally, we show that one can obtain a charge expression for gravity theories in various dimensions, which plays the role of the Abbott-Deser-Tekin charge for spacetimes with nonconstant curvature backgrounds, by using the diffeomorphism invariance of the symplectic two-form. As an example, we calculate the conserved charges of some solutions of new massive gravity and compare the results with previous works.
2

Conserved Charges Of Quadratic Curvature Gravity Theories In Arbitrary Backgrounds

Devecioglu, Deniz Olgu 01 September 2010 (has links) (PDF)
We generalize the definition of conserved gravitational Killing charges of quadratic curvature gravity theories to arbitrary backgrounds that admit at least one global (time-like) Killing vector. This charge definition is background gauge invariant and reduces correctly to the already known limit given by [1] when the background is a space of constant curvature. As an application we use this definition to compute the charges of various black holes in New Massive Gravity / namely the BTZ black hole, the black hole given in [2] and the Lifshitz black hole. Finally we compare the charges of these black holes with the ones given in [3], which uses a different approach.
3

Conformal Symmetry In Field Theory

Huyal, Ulas 01 February 2011 (has links) (PDF)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
4

Sólitons e teorias não lineares integráveis / Solitons and Nonlinear Integrable Systems

Santana, Vinicius Teibel 02 July 2009 (has links)
Uma generalização dos modelos de Toda bidimensionais pela inclusão de campos de Dirac é estudada através de métodos algébricos que possibilitam a construção de cargas e soluções para o modelo. Após desenvolver o formalismo matemático necessário, as cargas conservadas do modelo em questão são determinadas para soluções sóliton, a partir da órbita do vácuo. Uma comparação direta com o modelo de sine-Gordon revela que o mesmo processo de interação entre os sólitons ocorre em ambas as teorias, indicando a possibilidade deste modelo ser utilizado para analisar a equivalência entre esse modelo e os de sine-Gordon e Thirring. / A generalization of two dimensional Toda models by the inclusion of Dirac fields is studied through algebraic methods that allow the construction of charges and solutions. After developing the necessary mathematical formalism, the conserved charges of such model are determined forsoliton solutions belonging to the orbits of the vacuum. A direct comparison between Toda model coupled to matter fields and sine-Gordon model shows that the same interaction process among solitons occurs in both theories, indicating the possibility of this model to be used to analyze the equivalence between sine-Gordon and Thirring models.
5

Teorias de campos integráveis e sólitons / Integrable field theories and solitons

Anjos, Rita de Cássia dos 02 July 2009 (has links)
Os modelos de Toda admitem uma representação de suas equações de movimento em termos da curvatura nula, isto é, existem potenciais que são funcionais dos campos da teoria e pertencem a uma álgebra de Kac-Moody tal que a condição de curvatura nula seja equivalente às equações de movimento. Para a construção das soluções solitônicas e cargas conservadas são necessários a gradação inteira da álgebra de Kac-Moody e a existência de soluções de vácuo, de forma que os potenciais assumam valores em uma subálgebra abeliana quando calculados nestas soluções de vácuo. A gradação da álgebra é de extrema importância pois garante que o potencial transformado tenha a mesma estrutura que o potencial de vácuo. As cargas conservadas são então construídas partindo de soluções da órbita do vácuo por meio de transformações de dressing, que consistem na aplicação da decomposição de Gauss para a produção de um potencial transformado a partir de duas transformações de Gauge. Nesta dissertação calculamos as infinitas cargas conservadas dos modelos de Toda sl(3) e também sl(N), avaliadas nas soluções pertencentes à órbita do vácuo sob transformações de dressing. As soluções de interesse físico, como sólitons e breathers pertencem a esta órbita, e as cargas conservadas para tais soluções são escritas como uma soma sobre os sólitons. Mostramos que a energia e o momento proveem de termos de superfície. / The Toda models admit a zero curvature representation of their equations of motion, i.e. there exist potentials, (A), wich are functionals of the fields of the theory and which belong to a Kac-Moody algebra G such that the zero curvature condition is equivalent to the equations of motion. For the construction of the solitons solutions and conserved charges is required an integer gradation of the Kac-Moody algebra and a ``vacuum solution\'\', such that the potentials evaluated on it belong to an abelian subalgebra. The gradation of the algebra is of extreme importance since it guarantees that the transformed potential have the same structure as the vacuum potential. The conserved charges are then constructed using the dressing method, that through the Gauss decomposition, leads to the transformed potentials by two gauge transformations. In this dissertation we calculate the infinite conserved charges of models Toda sl (3) and also sl (N) evaluated on the solutions belonging to the orbit of the vacuum under dressing transformations. The solutions of physical interest, like solitons and breathers belong to this orbit and the conserved charges for such solutions are written as a sum over the number the solitons. We show that the energy and momentum are boundary terms.
6

Teorias de campos integráveis e sólitons / Integrable field theories and solitons

Rita de Cássia dos Anjos 02 July 2009 (has links)
Os modelos de Toda admitem uma representação de suas equações de movimento em termos da curvatura nula, isto é, existem potenciais que são funcionais dos campos da teoria e pertencem a uma álgebra de Kac-Moody tal que a condição de curvatura nula seja equivalente às equações de movimento. Para a construção das soluções solitônicas e cargas conservadas são necessários a gradação inteira da álgebra de Kac-Moody e a existência de soluções de vácuo, de forma que os potenciais assumam valores em uma subálgebra abeliana quando calculados nestas soluções de vácuo. A gradação da álgebra é de extrema importância pois garante que o potencial transformado tenha a mesma estrutura que o potencial de vácuo. As cargas conservadas são então construídas partindo de soluções da órbita do vácuo por meio de transformações de dressing, que consistem na aplicação da decomposição de Gauss para a produção de um potencial transformado a partir de duas transformações de Gauge. Nesta dissertação calculamos as infinitas cargas conservadas dos modelos de Toda sl(3) e também sl(N), avaliadas nas soluções pertencentes à órbita do vácuo sob transformações de dressing. As soluções de interesse físico, como sólitons e breathers pertencem a esta órbita, e as cargas conservadas para tais soluções são escritas como uma soma sobre os sólitons. Mostramos que a energia e o momento proveem de termos de superfície. / The Toda models admit a zero curvature representation of their equations of motion, i.e. there exist potentials, (A), wich are functionals of the fields of the theory and which belong to a Kac-Moody algebra G such that the zero curvature condition is equivalent to the equations of motion. For the construction of the solitons solutions and conserved charges is required an integer gradation of the Kac-Moody algebra and a ``vacuum solution\'\', such that the potentials evaluated on it belong to an abelian subalgebra. The gradation of the algebra is of extreme importance since it guarantees that the transformed potential have the same structure as the vacuum potential. The conserved charges are then constructed using the dressing method, that through the Gauss decomposition, leads to the transformed potentials by two gauge transformations. In this dissertation we calculate the infinite conserved charges of models Toda sl (3) and also sl (N) evaluated on the solutions belonging to the orbit of the vacuum under dressing transformations. The solutions of physical interest, like solitons and breathers belong to this orbit and the conserved charges for such solutions are written as a sum over the number the solitons. We show that the energy and momentum are boundary terms.
7

Sólitons e teorias não lineares integráveis / Solitons and Nonlinear Integrable Systems

Vinicius Teibel Santana 02 July 2009 (has links)
Uma generalização dos modelos de Toda bidimensionais pela inclusão de campos de Dirac é estudada através de métodos algébricos que possibilitam a construção de cargas e soluções para o modelo. Após desenvolver o formalismo matemático necessário, as cargas conservadas do modelo em questão são determinadas para soluções sóliton, a partir da órbita do vácuo. Uma comparação direta com o modelo de sine-Gordon revela que o mesmo processo de interação entre os sólitons ocorre em ambas as teorias, indicando a possibilidade deste modelo ser utilizado para analisar a equivalência entre esse modelo e os de sine-Gordon e Thirring. / A generalization of two dimensional Toda models by the inclusion of Dirac fields is studied through algebraic methods that allow the construction of charges and solutions. After developing the necessary mathematical formalism, the conserved charges of such model are determined forsoliton solutions belonging to the orbits of the vacuum. A direct comparison between Toda model coupled to matter fields and sine-Gordon model shows that the same interaction process among solitons occurs in both theories, indicating the possibility of this model to be used to analyze the equivalence between sine-Gordon and Thirring models.
8

Conserved Charges In Asymptotically (anti)-de Sitter Spacetime

Gullu, Ibrahim 01 August 2005 (has links) (PDF)
ABSTRACT CONSERVED CHARGES IN ASYMPTOTICALLY (ANTI)-DE SITTER SPACETIME G&Uuml / LL&Uuml / , iBRAHiM M.S., Department of Physics Supervisor: Assoc. Prof. Dr. Bayram Tekin August 2005, 77 pages. In this master&rsquo / s thesis, the Killing vectors are introduced and the Killing equation is derived. Also, some information is given about the cosmological constant. Then, the Abbott-Deser (AD) energy is reformulated by linearizing the Einstein equation with cosmological constant. From the linearized Einstein equation, Killing charges are derived by using the properties of Killing vectors. Using this formulation, energy is calculated for some specific cases by using the Schwarzschild-de Sitter metric. Last, the Einstein-Gauss-Bonnet model is studied. The equations of motion are calculated by solving the generic action at quadratic order. Following this, all energy calculations are renewed for this model. Some useful relations and calculations are shown in Appendix (A-B) parts. &Ouml / Z ASiMPTOTiK (ANTi)-DE SITTER UZAYZAMANINDA KORUNAN Y&Uuml / KLER G&Uuml / LL&Uuml / , iBRAHiM Y&uuml / ksek Lisans, Fizik B&ouml / l&uuml / m&uuml / Tez Y&ouml / neticisi: Assoc. Prof. Dr. Bayram Tekin Agustos 2005, 77 sayfa. Bu master &ccedil / aliSmasinda, Killing vekt&ouml / rler tanimlandi ve Killing denklemi &ccedil / ikarildi. Ayrica evrenbilimsel sabit, de-Sitter ve Anti-de Sitter uzaylari hakkinda bilgi verildi. Sonra, Abbott-Deser (AD) enerjisi, evrenbilimsel sabitli Einstein denklemi dogrusallaStirilarak yeniden form&uuml / le edildi. DogrusallaStirilmiS Einstein denkleminden, Killing vekt&ouml / rlerin &ouml / zellikleri kullanilarak Killing y&uuml / kleri (Deser-Tekin denklemi) &ccedil / ikarildi. Schwarzschild-de Sitter metrigi kullanilarak &ouml / zel durumlar i&ccedil / in enerji hesaplandi. Son olarak Einstein-Gauss-Bonnet (GB) modeli &ccedil / aliSildi. ikinci dereceden genel eylem &ccedil / &ouml / z&uuml / lerek hareket denklemleri hesaplandi. Bundan sonra, t&uuml / m enerji hesaplamalari bu model i&ccedil / in tekrarlandi. Bazi faydali hesaplamalar ek (A-B) kisimlarinda g&ouml / sterilmiStir.
9

Topics on Gravity Outside of Four Dimensions

Bouchareb, Adel 14 September 2011 (has links) (PDF)
The thesis is divided into two loosely connected parts: the first one is concerned with three dimensional Topologically massive gravity (TMG) and the other is devoted to generating solutions of black objects within five minimal dimensional supergravity theory (mSUGRA5).
10

Electric and magnetic aspects of gravitational theories

Dehouck, François 23 September 2011 (has links)
Cette thèse se consacre premièrement à certains aspects de la définition de charges conservées en relativité générale pour les espaces asymptotiquement plats à l’infini spatial. À l’aide de la dualité gravitationnelle, présente au niveau linéarisé, on étudie également l’existence de charges topologiques, magnétiques, ainsi que leurs contributions aux superalgèbres dans les théories de supergravité N = 1 et N = 2 à quatre dimensions. La thèse est divisée en trois parties.<p>Dans la première partie, les espaces asymptotiquement plats à l’infini spatial sont décrits à l’aide d’une généralisation de la métrique de type Beig-Schmidt. La construction de charges à partir de l’étude des équations du mouvement et de la classification de tenseurs symétriques et de divergences nulles nous permet de démontrer l’unicité des charges de Poincaré pour l’ansatz non-généralisé en présence de conditions de parité. L’équivalence des charges de Ashtekar- Hansen et Mann-Marolf est ainsi revisitée. Dans le cas d’un ansatz généralisé, une régulation de la forme symplectique divergente, à l’aide de contre-termes rajoutés à l’action de Mann-Marolf, nous donne la possibilité de considérer un espace des phases sans conditions de parité, tout en gardant un principe variationnel bien défini. Le groupe asymptotique comprend alors, en plus des charges de Poincaré où les charges de Lorentz ne sont plus asymptotiquement linéaires, des charges non-triviales associées aux supertranslations et aux transformations logarithmiques.<p>Dans la deuxième partie, on étudie la dualité gravitationnelle et la définition de charges magnétiques en gravitation linéarisée. On revisite la dualité et on montre qu’une dualisation sur les indices de Lorentz facilite la compréhension de celle-ci. Les dix charges de Poincaré ainsi que leurs duales magnétiques sont alors exprimées en termes d’intégrales de surface. Nous illustrons ensuite nos résultats à travers l’étude des sources de certaines solutions électriques et de leur duales magnétiques. Les solutions électriques envisagées sont :les trous noirs de type Schwarzschild et de type Kerr ainsi que les ondes de chocs de type pp.<p>Dans la dernière partie, on établit la supersymétrie des espaces de type Taub-NUT lorentzien chargés électriquement et magnétiquement dans la supergravité N = 2. Motivé par l’existence d’une égalité BPS, on entreprend alors une recherche sur l’inclusion de la charge NUT dans l’algèbre de supersymétrie. Grâce à une complexification de la forme de Witten-Nester, cette contribution de la charge NUT à la superalgèbre est comprise comme une déformation topologique, symétrique, au crochet antisymétrique des super-charges. Ce résultat est alors appliqué à la superalgèbre N = 1 à travers l’étude des ondes de chocs de type pp.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0615 seconds