1 |
Symmetry solutions and conservation laws for some partial differential equations in fluid mechanicsNaz, Rehana 26 May 2009 (has links)
ABSTRACT
In jet problems the conserved quantity plays a central role in the solution
process. The conserved quantities for laminar jets have been established either
from physical arguments or by integrating Prandtl's momentum boundary
layer equation across the jet and using the boundary conditions and the
continuity equation. This method of deriving conserved quantities is not
entirely systematic and in problems such as the wall jet requires considerable
mathematical and physical insight.
A systematic way to derive the conserved quantities for jet °ows using
conservation laws is presented in this dissertation. Two-dimensional, ra-
dial and axisymmetric °ows are considered and conserved quantities for
liquid, free and wall jets for each type of °ow are derived. The jet °ows
are described by Prandtl's momentum boundary layer equation and the
continuity equation. The stream function transforms Prandtl's momentum
boundary layer equation and the continuity equation into a single third-
order partial di®erential equation for the stream function. The multiplier
approach is used to derive conserved vectors for the system as well as
for the third-order partial di®erential equation for the stream function for
each jet °ow. The liquid jet, the free jet and the wall jet satisfy the same
partial di®erential equations but the boundary conditions for each jet are
di®erent. The conserved vectors depend only on the partial di®erential
equations. The derivation of the conserved quantity depends on the boundary
conditions as well as on the di®erential equations. The boundary condi-
tions therefore determine which conserved vector is associated with which
jet. By integrating the corresponding conservation laws across the jet and
imposing the boundary conditions, conserved quantities are derived. This
approach gives a uni¯ed treatment to the derivation of conserved quantities for jet °ows and may lead to a new classi¯cation of jets through conserved vectors.
The conservation laws for second order scalar partial di®erential equations
and systems of partial di®erential equations which occur in °uid mechanics
are constructed using di®erent approaches. The direct method, Noether's
theorem, the characteristic method, the variational derivative method (mul-
tiplier approach) for arbitrary functions as well as on the solution space,
symmetry conditions on the conserved quantities, the direct construction
formula approach, the partial Noether approach and the Noether approach for
the equation and its adjoint are discussed and explained with the help of an
illustrative example. The conservation laws for the non-linear di®usion equa-
tion for the spreading of an axisymmetric thin liquid drop, the system of two
partial di®erential equations governing °ow in the laminar two-dimensional
jet and the system of two partial di®erential equations governing °ow in the
laminar radial jet are discussed via these approaches.
The group invariant solutions for the system of equations governing °ow in two-dimensional and radial free jets are derived. It is shown that the group
invariant solution and similarity solution are the same.
The similarity solution to Prandtl's boundary layer equations for two-
dimensional and radial °ows with vanishing or constant mainstream velocity
gives rise to a third-order ordinary di®erential equation which depends on a
parameter. For speci¯c values of the parameter the symmetry solutions for
the third-order ordinary di®erential equation are constructed. The invariant solutions of the third-order ordinary di®erential equation are also derived.
|
2 |
Some Properties And Conserved Quantities Of The Short Pulse EquationErbas, Kadir Can 01 February 2008 (has links) (PDF)
Short Pulse equation derived by Schafer and Wayne is a nonlinear partial differential equation that describes ultra short laser propagation in a dispersive optical medium such as optical fibers. Some properties of this equation e.g. traveling wave solution and its soliton structure and some of its conserved quantities were investigated. Conserved quantities were obtained by mass conservation law, lax pair method and
transformation between Sine-Gordon and short pulse equation. As a result, loop soliton characteristic and six conserved quantities were found.
|
3 |
Algorithmic detection of conserved quantities of finite-difference schemes for partial differential equationsKrannich, Friedemann 04 1900 (has links)
Many partial differential equations (PDEs) admit conserved quantities like mass or energy. Those quantities are often essential to establish well-posed results. When approximating a PDE by a finite-difference scheme, it is natural to ask whether related discretized quantities remain conserved under the scheme. Such conservation may establish the stability of the numerical scheme. We present an algorithm for checking the preservation of a polynomial quantity under a polynomial finite-difference scheme. In our algorithm, schemes can be explicit or implicit, have higher-order time and space derivatives, and an arbitrary number of variables. Additionally, we present an algorithm for, given a scheme, finding conserved quantities. We illustrate our algorithm by studying several finite-difference schemes.
|
4 |
Deducting Conserved Quantities for Numerical Schemes using Parametric Groebner SystemsMajrashi, Bashayer 05 1900 (has links)
In partial differential equations (PDEs), conserved quantities like mass and momentum are fundamental to understanding the behavior of the described physical
systems. The preservation of conserved quantities is essential when using numerical
schemes to approximate solutions of corresponding PDEs. If the discrete solutions
obtained through these schemes fail to preserve the conserved quantities, they may
be physically meaningless and unreliable.
Previous approaches focused on checking conservation in PDEs and numerical
schemes, but they did not give adequate attention to systematically handling parameters. This is a crucial aspect because many PDEs and numerical schemes have parameters that need to be dealt with systematically. Here, we investigate if the discrete
analog of a conserved quantity is preserved under the solution induced by a parametric finite difference method. In this thesis, we modify and enhance a pre-existing
algorithm to effectively and reliably deduce conserved quantities in the context of
parametric schemes, using the concept of comprehensive Groebner systems.
The main contribution of this work is the development of a versatile algorithm
capable of handling various parametric explicit and implicit schemes, higher-order
derivatives, and multiple spatial dimensions. The algorithm’s effectiveness and efficiency are demonstrated through examples and applications. In particular, we illustrate the process of selecting an appropriate numerical scheme among a family of
potential discretization for a given PDE.
|
Page generated in 0.1103 seconds