• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-Precision Measurements of the Superallowed Beta+ Decays of 38Ca and 46V

Park, Hyo-In 2011 August 1900 (has links)
As a part of our program to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix, the decay of the superallowed 0⁺ --> 0⁺ beta emitters ³⁸Ca and ⁴⁶V has been studied in this dissertation. For ³⁸Ca, the half-life, 443.88(36) ms, and superallowed branching ratio, 0.7738(41), have been measured. In our half-life experiment, pure sources of ³⁸Ca were produced and the decay positrons detected in a high-efficiency 4[pi] proportional gas counter. Since the beta⁺ decay of ³⁸Ca feeds ³⁸K^m, which is itself a superallowed beta⁺ emitter, the data were analyzed as a linked parent-daughter decay. Our result for the half-life of ³⁸Ca, with a precision of 0.08%, is a factor of five improvement on the best previous result. The branching-ratio of ³⁸Ca depended on beta-delayed gamma-ray intensities being measured with a high-purity germanium detector calibrated for absolute efficiency to 0.2% precision. This branching-ratio result represents our first step in bringing the ft value for the superallowed ³⁸Ca transition into the desired range of 0.1%. With our half-life and superallowed branching ratio results for ³⁸Ca, we obtain the Ft to be 3072(17) s, in good agreement with the conserved vector current expectation. The half-life of ⁴⁶V has been measured to be 422.66(6) ms, a factor of two more precise than the best previous measurement. Our present result determines the corresponding Ft value to be 3074.5(26) s, which is consistent with the average $\overline{\mathcal{F}t}$ value of 3072.08(79) s established from the 13 best-known superallowed transitions. This demonstrates that previously accepted half-lives of ⁴⁶V were correct in their contribution to a precision test of the conserved vector current hypothesis.

Page generated in 0.0944 seconds