Spelling suggestions: "subject:"constante dde bubble"" "subject:"constante dde hubble""
1 |
The tension between global and local determinations of the Hubble constant in the presence of a non-standard dark energy.TORRES, D. F. C. 26 February 2018 (has links)
Made available in DSpace on 2018-08-01T21:59:24Z (GMT). No. of bitstreams: 1
tese_11869_Dissertação David Francisco Camarena Torres - PPGFis.pdf: 3693932 bytes, checksum: d4dbee4c7e7b629e6aee4ab2ede4044e (MD5)
Previous issue date: 2018-02-26 / Existe uma tensão ao redor de 3.4σ entre as determinações globais e locais da constante de Hubble H0 fornecidas por observações de supernovas de tipo Ia [1] e da radiação cósmica de fundo [2], respectivamente. Esta tensão não pode ser explicada pelo modelo de concordança ΛCDM e ela poderia ser produzida por erros sistemáticos desconhecidos na calibração da escadaria cósmica ou na análise da radiação cósmica de fundo. Contudo, na ausência destes erros, a tensão poderia ser uma sugestão da existência de física além do modelo ΛCDM. Por outro lado, é bem sabido que a teoria linear de perturbações prevê uma variância cósmica sobre o parâmetro de Hubble H0, produzida pelas velocidades peculiares e estruturas locais, que conduz a um erro sistemático na determinações locais de H0. No presente trabalho, nós consideramos a variância cósmica, prevista pela teoria de perturbações lineares, na presença de uma energia escura não padrão, com o fim de calcular o erro sistemático sobre a taxa de Hubble local. A energia escura não padrão é representada pelo modelo de quintessência e pelas parametrizações γCDM, γwCDM e γaCDM. Logo, nós incluímos o erro sistemático na análise estatística Bayesiana que usa dados da radiação cósmica de fundo, oscilações acústicas dos bárions, supernovas de tipo Ia, distorções no espaço de redshift e H0locl . Assim, nós mostramos o efeito da variância cósmica na determinação de parâmetros cosmológicos e o problema de tensão. Finalmente, nós realizamos a seleção de modelos usando os critérios de seleção AIC e BIC e também mostramos como o erro sistemático, fornecido pelos modelos de energia escura não padrão, poderia ajudar a aliviar a atual tensão nas determinações de H0.
|
2 |
El método de patrones lumínicos estandarizables para supernovas tipo II-POlivares Estay, Felipe Andrés January 2008 (has links)
Magíster en Ciencias, Mención Astronomía / Durante el desarrollo de esta tesis estudiamos el Método de Patrones Lumínicos Estandarizables (SCM) para supernovas Tipo II “plateau" haciendo uso de fotometría BVRI y espectroscopía óptica. Se implementó un procedimiento analítico para ajustar funciones a las curvas de luz, de color y de velocidad de expansión. Encontramos que el color V–I de estas supernovas, medido hacia el final de la época “plateau", puede ser utilizado para estimar el enrojecimiento provocado por el material interestelar de la galaxia anfitriona con una precisión de σ(AV) = 0.2 mag. Tras realizar las correcciones necesarias a la fotometría se recupera la relación luminosidad versus velocidad de expansión, reportada previamente en la literatura científica. Ocupando esta relación y asumiendo una ley de extinción estándar (RV = 3.1) obtenemos diagramas de Hubble con dispersiones de ~0.4 mag en las bandas BVI. Por otra parte, si permitimos variaciones en RV en favor de incertezas menores obtenemos una dispersión final de 0.25–0.30 mag, lo que implica que estos objetos pueden entregar distancias tan precisas como 12–14%. El valor resultante para RV es de 1.4 ± 0.1, que sugiere una ley de extinción no-estándar en nuestra línea de visión hacia este tipo de supernovas. Utilizando dos objetos con distancia Cefeida para calibrar la relación luminosidad-velocidad obtenemos una constante de Hubble de 70 ± 8 km s-1 Mpc-1, en buen acuerdo con el valor que obtuvo el HST Key Project.
|
3 |
Estimateur neuronal de ratio pour l'inférence de la constante de Hubble à partir de lentilles gravitationnelles fortesCampeau-Poirier, Ève 12 1900 (has links)
Les deux méthodes principales pour mesurer la constante de Hubble, soit le taux d’expansion
actuel de l’Univers, trouvent des valeurs différentes. L’une d’elle s’appuie lourdement sur le
modèle cosmologique aujourd’hui accepté pour décrire le cosmos et l’autre, sur une mesure
directe. Le désaccord éveille donc des soupçons sur l’existence d’une nouvelle physique en
dehors de ce modèle. Si une autre méthode, indépendante des deux en conflit, soutenait une
des deux valeurs, cela orienterait les efforts des cosmologistes pour résoudre la tension.
Les lentilles gravitationnelles fortes comptent parmi les méthodes candidates. Ce phénomène
se produit lorsqu’une source lumineuse s’aligne avec un objet massif le long de la ligne de
visée d’un télescope. La lumière dévie de sa trajectoire sur plusieurs chemins en traversant
l’espace-temps déformé dans le voisinage de la masse, résultant en une image déformée, gros-
sie et amplifiée. Dans le cas d’une source lumineuse ponctuelle, deux ou quatre images se
distinguent nettement. Si cette source est aussi variable, une de ses fluctuations apparaît à
différents moments sur chaque image, puisque chaque chemin a une longueur différente. Le
délai entre les signaux des images dépend intimement de la constante de Hubble.
Or, cette approche fait face à de nombreux défis. D’abord, elle requiert plusieurs jours à des
spécialistes pour exécuter la méthode de Monte-Carlo par chaînes de Markov (MCMC) qui
évalue les paramètres d’un seul système de lentille à la fois. Avec les détections de milliers
de systèmes prévues par l’observatoire Rubin dans les prochaines années, cette approche est
inconcevable. Elle introduit aussi des simplifications qui risquent de biaiser l’inférence, ce qui
contrevient à l’objectif de jeter la lumière sur le désaccord entre les mesures de la constante
de Hubble.
Ce mémoire présente une stratégie basée sur l’inférence par simulations pour remédier à ces
problèmes. Plusieurs travaux antérieurs accélèrent la modélisation de la lentille grâce à l’ap-
prentissage automatique. Notre approche complète leurs efforts en entraînant un estimateur
neuronal de ratio à déterminer la distribution de la constante de Hubble, et ce, à partir des
produits de la modélisation et des mesures de délais. L’estimateur neuronal de ratio s’exécute
rapidement et obtient des résultats qui concordent avec ceux de l’analyse traditionnelle sur
des simulations simples, qui ont une cohérence statistique acceptable et qui sont non-biaisés. / The two main methods to measure the Hubble constant, the current expansion rate of the
Universe, find different values. One of them relies heavily on today’s accepted cosmological
model describing the cosmos and the other, on a direct measurement. The disagreement
thus arouses suspicions about the existence of new physics outside this model. If another
method, independent of the two in conflict, supported one of the two values, it would guide
cosmologists’ efforts to resolve the tension.
Strong gravitational lensing is among the candidate methods. This phenomenon occurs when
a light source aligns with a massive object along a telescope line of sight. When crossing the
curved space-time in the vicinity of the mass, the light deviates from its trajectory on several
paths, resulting in a distorted and magnified image. In the case of a point light source, two
or four images stand out clearly. If this source is also variable, the luminosity fluctuations
will appear at different moments on each image because each path has a different length.
The time delays between the image signals depend intimately on the Hubble constant.
This approach faces many challenges. First, it requires several days for specialists to perform
the Markov Chain Monte-Carlo (MCMC) which evaluates the parameters of a single lensing
system at a time. With the detection of thousands of lensing systems forecasted by the
Rubin Observatory in the coming years, this method is inconceivable. It also introduces
simplifications that risk biasing the inference, which contravenes the objective of shedding
light on the discrepancy between the Hubble constant measurements.
This thesis presents a simulation-based inference strategy to address these issues. Several
previous studies have accelerated the lens modeling through machine learning. Our approach
complements their efforts by training a neural ratio estimator to determine the distribution of
the Hubble constant from lens modeling products and time delay measurements. The neural
ratio estimator results agree with those of the traditional analysis on simple simulations, have
an acceptable statistical consistency, are unbiased, and are obtained significantly faster.
|
Page generated in 0.0853 seconds