• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport électronique polarisé en spin dans les contacts atomiques de fer

Autès, Gabriel 12 December 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude théorique du transport électronique dans les contacts atomiques magnétiques. L'objectif principal est d'expliquer la magnétorésistance anisotrope géante mesurée expérimentalement dans les jonctions à cassure de fer. Dans ce but, on a développé une méthode de calcul de la conductance des nanostructures magnétiques.<br />Le calcul est effectué en deux étapes. Dans un premier temps, la structure électronique du contact est déterminée de manière autocohérente dans une base d'orbitales atomiques spd à l'aide d'un modèle de liaisons fortes étendu au magnétisme. Les propriétés magnétiques sont décrites à l'échelle atomique par un modèle d'interaction inter-électronique. Deux modèles d'interactions sont comparés : un modèle simple de type Stoner et un modèle plus complet de type Hartree-Fock développé pour reproduire les effets de polarisation orbitale susceptibles d'apparaître au niveau du contact. En effet, dans les nanostructures unidimensionnelles, on observe une levée du blocage du moment orbital qui existe dans les cristaux cubiques en volume. Pour permettre la description de l'anisotropie magnétique du système, on prend aussi en compte le magnétisme non-colinéaire et le couplage spin-orbite.<br />Dans un second temps, les propriétés de transport électroniques du système sont déterminées dans le formalisme de Landauer. Dans cette approche, on considère que le transport est cohérent et élastique. Cette approximation est valide quand étudie un conducteur de taille atomique à basse température sous de faibles tensions. La conductance est alors directement proportionnelle à la probabilité de transmission des électrons à travers le système. Cette transmission est calculée à partir de la fonction de Green du système. <br />Cette méthode de calcul est appliquée à l'étude de la magnétorésistance anisotrope des contacts de fer. Plusieurs géométries de contact, allant du fil monoatomique parfait aux systèmes réalistes, sont comparées. Les résultats révèlent le rôle prépondérant joué par la géométrie et par la polarisation orbitale. Pour que l'anisotropie magnétique soit aussi élevée que dans les expériences, il est nécessaire que l'atome de contact soit dans une configuration de fil monoatomique. Les effets de polarisation orbitale permettent d'expliquer les deux plateaux de conductance mesurés expérimentalement. Ils sont liés à l'existence de deux états magnétiques métastables qui différent par la direction du moment orbital sur l'atome de contact.
2

Effet Josephson dans les contacts atomiques / The Josephson Effect in Atomic Contacts

Chauvin, Martin 22 November 2005 (has links) (PDF)
L'effet Josephson apparaît lorsqu'une structure de couplage faible établit une cohérence de phase entre deux supraconducteurs. Une théorie unificatrice de cet effet est apparue dans les années 90 dans le cadre de la physique mésoscopique. Basée sur deux concepts fondamentaux, celui de canaux de conduction et celui de réflexion d'Andreev, elle prédit la relation courant-phase pour la structure de couplage de base : un canal unique de transmission arbitraire.<br />Cette thèse illustre ce point de vue mésoscopique par des expériences sur des contacts atomiques supraconducteurs. En particulier, nous avons étudié le pic de supercourant près de la tension nulle, avons mis en évidence les courants Josephson alternatifs dans un contact polarisé par une tension constante (résonances de Shapiro et réflexions multiples d'Andreev assistées par des photons) et avons mesuré directement la relation courant-phase.
3

Interactions entre électrons, effet Josephson mésoscopique et fluctuations asymétriques du courant

Huard, Benjamin 22 September 2006 (has links) (PDF)
Cette thèse décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est une mesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.
4

Electroluminescence à l'échelle du contact métallique ponctuel / Electroluminescence at the scale of the atomic point contact

Malinowski, Tuhiti 12 July 2016 (has links)
Cette thèse expérimentale traite de l'électroluminescence de contacts atomiques en or. Les contacts métalliques ponctuels sont formés et pilotés à l'aide d'un dispositif de jonction brisée contrôlée mécaniquement. Les contacts sont formés à partir d'un fil d'or et sont étudiés à la température ambiante.L'électroluminescence est observée dans le visible au travers d'un microscope optique. Le détecteur est une caméra sensible en silicium. Pour l'analyse du spectre émis, un dispositif dispersif en ligne a été spécifiquement développé. Pour l'infrarouge, le détecteur photovoltaïque monocanal est en InAsSb.Nos mesures électriques et optiques simultanées permettent de sonder la physique des interactions entre électrons et photons à l'échelle nanométrique. L'électroluminescence est attribuée à l'émission spontanée d'un nanogaz à haute température d'électrons chauds, conséquence des fortes densités de courant. Cette haute température électronique est fonction des conditions opératoires. Pour ces nanojonctions d'or, nos expériences nous permettent d’en proposer une expression analytique simple.Ces travaux complètent des expériences similaires menées depuis le début des années 2000. Ils sont discutés dans le cadre d'un modèle développé pour expliquer l'émission d'électrons chauds à partir de films métalliques granulaires. Nous discutons de la physique d’échauffement du gaz d’électron en rapprochant nos résultats d'expériences pompe/sonde femtoseconde interrogeant la dynamique des électrons hors équilibre dans des nanobilles d'or ainsi que d'expériences de transport en physique mésoscopique menées à très basse température. / This experimental thesis deals with electroluminescence from gold atomic point contacts. Metallic point contacts are formed and driven with a home-made mechanically controlled break junction device. The nanojunctions are made from gold wires. Experiments are performed at room temperature and in air.Electroluminescence is observed in the visible range with an infinity corrected inverted optical microscope. The detector is a high sensitivity silicon camera. To perform spectral analysis, a dispersive on-line device has been developed to be inserted directly within the microscope. A reflective objective collects infrared photons and focuses them onto an InAsSb photovoltaic cooled detector.Our simultaneous electrical and optical measurements allow us to investigate the physics of electrons and photons interactions at the nanometric scale. Electroluminescence is explained by the spontaneous emission of a hot electron nano-gas favoured by huge current densities. This high electron temperature depends on operating conditions. For gold ballistic nanojunctions, our results lead us to propose a simple expression of this temperature. This work extends similar electroluminescence studies performed since the early 2000’s. The results are discussed in this context and in the framework of a model first introduced to account for hot electron emission from thin granular metallic films. Moreover, we discuss the physics leading to the hot electron gaz with the support of pump/probe femtosecond experiments probing the nonequilibrium electron dynamics in gold nanosphere and with the support of low temperature mesoscopic transport experiments.
5

Excitations Localisées dans des Contacts Atomiques Supraconducteurs : SONDER LE DOUBLET D'ANDREEV

Bretheau, Landry 01 February 2013 (has links) (PDF)
Cette thèse décrit deux expériences mettant en lumière l'existence d'un degré de liberté fermionique dans l'effet Josephson: le doublet d'Andreev. Elles sont toutes les deux réalisées sur l'élément Josephson le plus élémentaire qui soit, un contact atomique entre deux électrodes supraconductrices. Dans la première, nous avons observé la disparition du supercourant, qui traduit le piégeage spontané d'une quasiparticule dans l'un des deux états liés d'Andreev. Dans la seconde, nous avons réalisé la spectroscopie photonique de ce système à deux niveaux, en utilisant une jonction Josephson à la fois en tant qu'émetteur et détecteur microonde. On peut bien rendre compte des spectres observés avec un modèle spin-boson incluant le doublet d'Andreev et un mode électromagnétique de l'environnement.
6

Imagerie, manipulation et contact électronique atome par atome sur la surface Si(100) : H avec le microscope à effet tunnel basse température à 4 pointes / Imaging, manipulation and electronic contact atome per atome on the Si (100) : H surface with the low-temperature 4 probes scanning tunneling microscope

Sordes, Delphine 03 May 2017 (has links)
La construction de circuits électroniques de section atomique est l'un des grands défis de la nanoélectronique ultime. Pour construire un circuit électronique atomique, il faut d'abord mettre au point l'instrument de construction puis choisir la surface-support stabilisant ce circuit. Sur la surface d'Au(111) préparée en ultra vide, nous avons mis en œuvre et stabilisé le tout premier LT-UHV-4 STM. Ce microscope à 4 pointes STM balayant en même temps et indépendamment une même surface a été construit pour le CEMES par la société ScientaOmicron. Sur l'Au(111), nous avons reproduit tous les résultats expérimentaux obtenus sur les meilleurs LT-UHV-STM à une pointe comme la précision en rugosité de 2 pm, les caractéristiques I-V sans moyenne sur un seul atome pendant plusieurs dizaines de minutes et la manipulation atomique suivant les modes de tiré, glissé et poussé d'un seul atome d'or sur la surface. Une fois cette optimisation réalisée, nous avons appliqué notre LT-UHV-4 STM à la surface de Si(100):H, support probable des futurs circuits atomiques électroniques. Le choix de ce support est discuté en détail avant l'enregistrement et l'analyse des images STM. Les échantillons utilisés proviennent, soit du procédé semi-industriel pleine-plaque de silicium mis au point au CEA-LETI, soit de leur préparation in situ se déroulant directement dans la chambre de préparation du LT-UHV-4 STM. Nous avons pris soin de bien interpréter les images STM de la surface Si(100):H afin par exemple de déterminer la position de chaque atome d'hydrogène. La lithographie atomique par STM a été exploitée, par pointe, sur le LT-UHV-4 STM, en mode manipulation verticale atome-par-atome et mode balayage plus rapide mais rendant l'écriture atomique moins précise. Nous avons construit nos propres fils atomiques puis des plots de contact atomiques, petits carrés de Si(100)H dépassivés de quelques nm de côté. Les courants de fuite à 2 pointes et à l'échelle atomique ont ainsi pu être mesurés sur la surface de Si(100):H entre deux de ces plots. Pour préparer les contacts atomiques à au moins 2 pointes sur un fil atomique ou sur des plots de contact nanométrique, nous avons étudié en détail les différents types de contact pointe STM-liaison pendante unique montrant la difficulté d'atteindre un quantum de conductance au contact, de par un effet de courbure de bandes. Il est donc difficile sans une mesure de force complémentaire de déterminer en partant du contact tunnel les différentes étapes du contact mécanique, électronique au contact chimique. Nos résultats ouvrent la voie à la caractérisation des circuits électroniques construits atome par atome et à l'échelle atomique à la surface d'un semi-conducteur. / The construction of electronic circuits of atomic section is one of the great challenges of the ultimate nanoelectronics. To build an atomic electronic circuit, it is necessary first to develop the dedicated instrument to build up and then to choose the support surface stabilizing this circuit. On the Au(111) surface prepared in ultra-vacuum, we implemented and stabilized the very first LT-UHV-4 STM. This STM 4-probes microscopes scanning at the same time and independently the same surface was built for the CEMES by the ScientaOmicron company. On Au(111), we reproduced all the experimental results obtained on the best LT-UHV-STM with one probe such as the precision in roughness of 2 pm, the IV characteristics recording without any average on a single atom for several tens of minutes and the atomic manipulation following the pulling, sliding and pushing modes of a single gold atom on the surface. Once this optimization was carried out, we applied our LT-UHV-4 STM to the surface of Si(100):H, probable support of the future electronic atomic circuits. The choice of this medium is discussed in detail before recording and analysis of the STM images. The samples used come either from the semi-industrial full-wafer silicon process developed at CEA-LETI or from their in-situ preparation, which takes place directly in the preparation chamber of the LT-UHV-4 STM. We have taken care to interpret the STM images of the surface Si(100):H in order to locate the position of each hydrogen atom. The atomic lithography by STM has been exploited, by using one tip from our LT-UHV-4 STM, by atom-per-atom vertical mode and faster scanning mode. The last makes atomic writing less accurate. We have constructed our own atomic wires and then atomic contact pads, small squares of Si(100)H defeated by a few nm sides. The leakage currents with 2 probes at the atomic scale have thus been able to be measured on the surface of Si(100):H between two of these pads. To prepare the atomic contacts at least 2 probes on an atomic wire or on nanometric contact pads, we studied in detail the different types of contact points STM-single dangling bond showing the difficulty of reaching a quantum of conductance at contact, due to a possible bands bending. It is therefore difficult without a complementary force measurement to determine, starting from the tunnel contact, the different steps of the mechanical, electronic contact at the chemical contact. Our results open the way to the characterization of electronic circuits constructed atom-by-atom and at atomic scale on the surface of a semiconductor.

Page generated in 0.0878 seconds