• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrification and Wetting at Water–Hydrophobe Interfaces: Fundamentals and Applications

Nauruzbayeva, Jamilya 10 March 2022 (has links)
Interfaces of water with water-repellent, or hydrophobic, materials are relevant in numerous natural and applied contexts. Examples include lotus leaves, membranes-assisted separation processes, and oil–water emulsions. Typically, water repellence is realized with the help of hydrocarbons and perfluorocarbons. Although these materials present low adhesion to water, their interfaces with water are known to be electrically charged. Origins of the electrification of water–hydrophobe interfaces is a century-old mystery that has been intensely debated on. A number of competing hypotheses have been proposed: specific interfacial adsorption of hydroxide ions, water dipole moment, partial interfacial charge transfer, specific interfacial adsorption of protons, cryptoelectrons, bicarbonate ions, and surfactant contamination. Given the significance of these interfaces, we investigated the origin of water–hydrophobe electrification. To disentangle the role of the various factors, we studied water’s interfaces with: solid hydrophobes, e.g., polypropylene; liquid hexadecane; and gas (air). Electrical charges incurred by water droplets formed using pipettes/tubes of hydrophobic (and hydrophilic) chemical make-up were quantified via electrometers and uniform electric fields. Specifically, we interrogated the contributions of water–hydrophobe surface area, surface chemistry, and water’s ionic strength, pH and dissolved CO2 content. We deduced that common solid hydrophobes have negatively charged surfaces even in air: when a hydrophobic pipette/tube is used to draw an aliquot of water from the bulk, hydrated cations form an electrical double layer at the liquid–solid interface. For the water–hexadecane interface, we tracked interfacial tensions over time. Our investigation revealed that trace amounts of impurities are present in the oil, despite purification, which interfere with purely interfacial effects. Lastly, we applied these fundamental insights to investigate slippery liquid-impregnated surfaces (SLIPS) realized using microtextured SiO2/Si wafers and sand dollar (Dendraster excentricus) templated PDMS surfaces. Recognizing the significant activity in triboelectric nanogenerators (TENGs), we conducted a parametric study of the device output and water–hydrophobe interfacial properties; and tested whether SLIPS could be incorporated in next-generation TENGs. The findings reported in this thesis address some long-standing questions on the spontaneous electrification of water–hydrophobe interfaces, and they should aid the rational development of practical applications such as SLIPS, TENGs, and beyond.
2

Computer Simulations Of Triboelectrification Of Particles And Their Trajectories In DC Electric Field

Puliyala, Srivathsa 01 December 2015 (has links)
This study aims to gain a fundamental understanding of the physics of triboelectri- cal charging of solid particles and the separation of the charged particles under an exter- nal DC electric field by computer simulations. A condenser model is used to implement charging mechanism and a soft sphere model is used to account for the Hertzian contact mechanics. The governing nondimensional parameters of the problem are identified and a parametric study is performed to investigate their effects on the charging efficiency and separation. The study finds relevance in a host of technologically important processes, such as recycling of plastic wastes, seed cleaning in agricultural industry and separation of coal from impurities in mining.
3

Air Breakdown in Contact Electrification

Hongcheng Tao (12476679) 29 April 2022 (has links)
<p>Contact electrification of solids in a gas medium involves two stages, i.e., surface charge deposition immediately at separation, and dissipation due to dielectric breakdown of the medium as the gap increases. The presumption that such gas breakdown obeys Paschen's law, which is conventionally determined for gas between electrodes with constant charge supply, is widely accepted yet unverified. The present work experimentally validates such dependence of the breakdown voltage of air between charged dielectric surfaces on both its pressure and the gap distance. Sample surfaces are brought to cycles of contact electrification in a vacuum chamber and charge relaxation due to air breakdown is monitored with measurements of the Coulomb attraction by fixing either the air pressure or gap distance and varying the other. The results indicate thresholds of pressure and distance to facilitate investigations of the raw amount of charge transfer prior to any breakdown discharge, which is adopted to examine the saturation trend of surface charge density in the contact electrification of multiple material combinations using the same test apparatus. Comparatively consistent results are obtained in repeated tests for a variety of contact pairs, while a reduction of saturated surface charge density is observed for PTFE against PDMS after breakdown discharge in low-pressure air, which is preliminarily attributed to alternations of PTFE surfaces caused by accelerated cation strikes during air breakdown, based on SEM images and estimations of particle energy in Townsend avalanches. Conclusions on both the general raw level of surface charge density and the air breakdown during separation in contact electrification are applied to complement models of vibro-impact triboelectric energy harvesters for predicting their performance under various air pressures and physical dimensions in order to either prevent or exploit air breakdown to enhance the power output.</p>
4

Driving Forces for the Triboelectric Charging of Well-Defined Insulating Material Surfaces

Wang, Andrew Eric 02 June 2020 (has links)
No description available.
5

Mechanisms of Contact Electrification at Aluminum-Polytetrafluoroethylene and Polypropylene-Water

Nauruzbayeva, Jamilya 04 1900 (has links)
Contact electrification refers to the transfer of electrical charges between two surfaces, similar and dissimilar, as they are brought into contact and separated; this phenomenon is also known as static electrification or triboelectrification. For example, everyone has experienced weak electrical shocks from metal doorknobs, wool and synthetic clothing on dry days. While contact electrification might appear insignificant, it plays a key role in numerous natural and industrial processes, including atmospheric lightning, accumulation of dust on solar panels, charging of liquids during pipetting and flow in the tubes, and fire hazards in granular media. Contact electrification at metal-metal interfaces is well understood in terms of transfer of electrons, but a comprehensive understanding of contact electrification at interfaces of electrical insulators, such as air, water, polytetrafluoroethylene (PTFE), polypropylene remains incomplete. In fact, a variety of mechanisms responsible for transfer of electrical charges during mechanical rubbing, slipping, sliding, or flow at interfaces have been proposed via: electrons, ions, protons, hydroxide ions from water, specific orientation of dipoles, mechanoradicals, cryptoelectrons, and transfer of material. We have noticed that the extent of contact electrification of solids in water is influenced by surface free energies, mobile ions, surface roughness, duration of contact, sliding speeds, and relative humidity. Herein, we present results of our experimental investigation of contact electrification at the following interfaces: (i) PTFE-aluminum in air and (ii) polypropylene-water interfaces. To identify the underlying mechanism, we started with various hypotheses and exploited a variety of experimental techniques to falsify most of them until we got an answer; our techniques included high-voltage power supply (0-10,000 V), Faraday cages, Kelvin probe force microscopy, electrodeposition, X-ray photoelectron spectroscopy, energy-dispersive spectroscopy, optical microscopy, a contact angle cell, and high-speed imaging. We concluded that contact electrification at the PTFE-aluminum interface was driven by electrons transferred from aluminum to PTFE. In contrast, contact electrification at the polypropylene-water interface was driven by the specific adsorption of OH- ions onto polypropylene. These insights should be helpful in designing applications of polymers where electrical charging could have influence, or applications that could be based on electrical charging at such interfaces, such as triboelectric generator.
6

Gecko Adhesion and Gecko-Inspired Dry Adhesives: From Fundamentals to Characterization and Fabrication Aspects

Izadi, Hadi 19 February 2014 (has links)
This study focuses on fabrication of dry adhesives mimicking gecko adhesion. We also look into the origin of the supreme adhesion of geckos, which have inspired the fabrication of fibrillar dry adhesives during the last decade or so. In principle, the superior material properties of ??-keratin (the main material comprising the fibrillar feature on gecko toe pads) along with the hierarchical high aspect-ratio fibrillar structure of geckos??? foot pad have enabled geckos to stick readily and rapidly to almost any surface in both dry and wet conditions. In this research, non-sticky fluoropolymer (Teflon AF) resembling ??-keratin rigidity and having an extremely low surface energy and dielectric constant was applied to fabricate a novel dry adhesive consisting of extremely high aspect-ratio nanopillars (200 nm in diameter) terminated with a fluffy top nanolayer. Both the nanopillars and the terminating layer were fabricated concurrently by replica-molding using a nanoporous anodic aluminum oxide membrane as the mold. In particular, upon infiltration of Teflon AF melt into the anodic aluminum oxide nanopores, the polymer melt fingered over the pore walls. The fingerlike structure formed during infiltration, subsequently collapsed after removal of the mold, developing a unique sheet-like nanostructure on top of the base nanopillars. Concurrent fabrication of the terminating nanostructure helps the fabrication of extremely high aspect-ratio (27.5???225) nanopillars which, up to an aspect-ratio of 185, neither collapse at the tip nor bundle. In order to fabricate nanopillars of different topographical properties, in our first approach, the height of the nanopillars as well as the size and density of the terminating nanostructure are carefully controlled by adjusting the processing temperature. Following that, a novel replica-molding technique for fabrication of bi-level Teflon AF nanopillars is reported. The developed technique relies on the concurrent heating and cooling of the Teflon AF melt which filled vertically-aligned alumina nanochannels. Unlike conventional polymer infiltration methods which consist of filling the mold by only heating the polymer above its glass transition temperature, in our novel method, the polymer melt is also simultaneously cooled down during the infiltration process. Concurrent cooling of the Teflon AF melt allows control over the interfacial instabilities of the polymer thin film, which forms ahead of the polymer melt upon its infiltration into the alumina nanochannels. Doing so, the geometrical properties of the subsequently developed peculiar fluffy nanostructure ??? after removal of the mold ??? on top of the extremely high aspect-ratio Teflon AF nanopillars (~25 ??m tall) are modified. In this project, we have also shown that the adhesion of the fabricated dry adhesives for the most part arises from electrostatic interactions of the applied polymer. In other words, Teflon AF, having an exceptional potential for developing electric charges at its surface upon contact with other materials via the so-called contact electrification phenomenon, can develop significant electrostatic interactions at its surface upon contact. In the current thesis, tribological results were discussed in detail to clarify the contribution of the structural properties of the fabricated dry adhesives toward their remarkable adhesion and friction forces generated via contact electrification. Nanopillars of specific geometrical properties have achieved remarkable adhesion and friction strengths, up to ~2.1 N/cm2 and 17 N/cm2, respectively (up to ~2.1 and 1.7 times larger than those of a gecko toe pad). It is commonly accepted that the adhesive performance of other synthetic bio-inspired dry adhesives is due to the formation of van der Waals interactions at the tip or side of the dry adhesives fibrils with the substrate they are brought into contact with. However, what has been usually neglected in this connection is that electrostatic interactions may also be developed at the contact between any two materials via the familiar contact electrification phenomenon. Although contact electrification is common and can have a large influence on interfacial interaction forces, its impact on adhesive properties of synthetic dry adhesives has been overlooked. Our results on adhesion of bi-level Teflon AF nanopillars, which can generate strong adhesion forces relying on electrostatic interactions arising from contact electrification, have brought to light again the idea that charging the surface of dry adhesives, specifically polymeric ones, can play a very crucial role in their adhesive behavior. From this perspective, the main reasons that have caused this lack of attention to this concept and the possible contributions of contact electrification to interfacial interactions of polymeric dry adhesives, other than bi-level Teflon AF nanopillars, are also thoroughly discussed in this thesis. Besides synthetic fibrillar dry adhesives, the possibility of the occurrence of contact electrification and its contribution to the supreme dry adhesion of geckos have also been overlooked for several decades. In this research, by the simultaneous measurement of electric charges and adhesion forces that gecko toe pads develop on two distinct substrates (a sticky and a non-sticky one), we have shown that the toe pads generate significantly large amounts of electric charge on both substrates. More importantly, we have found that there is a direct correlation between the contact electrification-driven electrostatic forces and the measured adhesion forces. Otherwise stated, we have shown that what makes the difference that geckos stick strongly to one surface and not to the other are the electrostatic interactions arising from contact electrification, and not van der Waals interactions, which have been considered as the prime source of adhesion of geckos for many years.
7

Evaluating the Factors Influencing the Friction Behavior of Paperboard during the Deep Drawing Process

Lenske, Alexander, Müller, Tobias, Penter, Lars, Schneider, Matti, Hauptmann, Marek, Majschak, Jens-Peter 28 June 2018 (has links) (PDF)
Deep drawing of paperboard with rigid tools and immediate compression has only a small presence in the market for secondary packaging solutions due to a lack of understanding of the physical relations that occur during the forming process. As with other processes that deal with interactions between two solids in contact, the control of the factors that affect friction is important due to friction’s impact on runnability and process reliability. A new friction measurement device was developed to evaluate the factors influencing the friction behavior of paperboard such as under the specific conditions of the deep drawing process, which differ from the standard friction testing methods. The tribocharging of the contacting surfaces, generated during sliding friction, was determined to be a major influence on the dynamic coefficient of friction between paperboard and metal. The same effect could be examined during the deep drawing process. With increased contact temperature due to the heating of the tools, the coefficient of friction decreased significantly, but it remained constant after reaching a certain charging state after several repetitions. Consequently, to avoid ruptures of the wall during the forming process, tools that are in contact with the paperboard should be heated.
8

Evaluating the Factors Influencing the Friction Behavior of Paperboard during the Deep Drawing Process

Lenske, Alexander, Müller, Tobias, Penter, Lars, Schneider, Matti, Hauptmann, Marek, Majschak, Jens-Peter 28 June 2018 (has links)
Deep drawing of paperboard with rigid tools and immediate compression has only a small presence in the market for secondary packaging solutions due to a lack of understanding of the physical relations that occur during the forming process. As with other processes that deal with interactions between two solids in contact, the control of the factors that affect friction is important due to friction’s impact on runnability and process reliability. A new friction measurement device was developed to evaluate the factors influencing the friction behavior of paperboard such as under the specific conditions of the deep drawing process, which differ from the standard friction testing methods. The tribocharging of the contacting surfaces, generated during sliding friction, was determined to be a major influence on the dynamic coefficient of friction between paperboard and metal. The same effect could be examined during the deep drawing process. With increased contact temperature due to the heating of the tools, the coefficient of friction decreased significantly, but it remained constant after reaching a certain charging state after several repetitions. Consequently, to avoid ruptures of the wall during the forming process, tools that are in contact with the paperboard should be heated.
9

New Method to Evaluate the Frictional Behavior within the Forming Gap during the Deep Drawing Process of Paperboard

Lenske, Alexander, Müller, Tobias, Hauptmann, Marek, Majschak, Jens-Peter 22 May 2019 (has links)
To evaluate the influence of different normal forces and contact temperatures on the frictional behavior of paperboard during the deep drawing process, a new measurement punch was developed to measure the normal force, which induced the friction within the gap between the forming cavity and punch. The resulting dynamic coefficient of friction was calculated and reproduced via a new developed substitute test for the friction measurement device, which was first introduced in Lenske et al. (2017). The normal force within the forming gap during the deep drawing process was influenced by the blankholder force profile, the contact temperature, and the fiber direction. The friction measurements with the substitute test showed a strong dependency between the applied normal force and the dynamic coefficient of friction. Furthermore the frictional behavior was influenced by the contact temperature and the wrinkle formation.

Page generated in 0.1061 seconds