• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical and Experimental Studies of Material Flow during the Friction Stir Welding Process

Cheng, Yu-Hsiang 16 February 2012 (has links)
In order to simulate the histories of temperature distributions and plastic flow of the dwell phase during a friction stir welding process, the Newton-Raphson method is used to solve the simultaneous equations of energy and momentum in the cylindrical-coordinate system. Comparing the simulation with the results of experiment, results show that the contact condition between the tool and the workpiece is at pure sliding without plastic flow at the beginning of the dwell phase until the temperature rises to about 300¢XC at the depth of 1.5 mm. In this period, the heat generation comes from the sliding friction between two surfaces. After the plastic flow occurs, the heat generation rises rapidly, and then decreases to a saturated value so that the temperature rise also achieves a constant value. Thermal expansion of the workpiece will increase the plunge force, so that the heat generation and the temperature raise increase. At the steady state condition, with increasing sticking proportion, the heat generation and the temperature quickly achieve a saturated value. For the steady-state condition, results show that the speed of plastic flow and shear strain rate increase with increasing rotational speed. The control of the contact state variable can effectively describe the heat generation and the distribution of plastic flow in different contact conditions. Comparing the simulation with the results of experiment, the contact condition can be identified.

Page generated in 0.0915 seconds