Spelling suggestions: "subject:"containment anda surveillance"" "subject:"containment ando surveillance""
1 |
Exploration of Ion-Exchanged Glass for Seals ApplicationsGhanbari, Roushan 2011 August 1900 (has links)
As the nuclear industry grows around the globe, it brings with it a need for more safeguards and proliferation resistant technologies. The International Atomic Energy Agency (IAEA) depends on effective containment and surveillance (C/S) technologies and methods for maintaining continuity of knowledge over nuclear assets. Tags and seals, a subset of C/S technologies, are an area where innovation has been relatively stagnant for the past fifteen years. It is necessary to investigate technologies not previously used in this field in order to defend against emerging threats and methods of defeat.
Based on a gap analysis of tags and seals currently being used by the IAEA, completed with the input of several subject matter experts, the technology selected for investigation was ion-exchanged glass. Ion-exchanged glass is relatively inexpensive, has high strength, and can be used in a variety of applications. If identical pieces of glass are exchanged under the same conditions and subjected to the same point load, the fracture patterns produced can be compared and used as a verification measure. This technology has the potential to be used in passive seal applications. Each image was categorized depending on its fracture as a "3 leaf" or "4 leaf" pattern. These two populations were separately analyzed and evaluated. Several methods used to analyze the fracture patterns involve the use of image analysis software such as ImageJ and the MATLAB Control Point Selection Tool. The statistical analysis software Minitab was used to validate the use of facture pattern analysis as verification tool. The analysis yielded a 60% verified comparison for samples demonstrating a "3 leaf" fracture pattern and a 78% verified comparison for samples with a "4 leaf" fracture pattern. This preliminary analysis provides a strong indication of the plausibility for the use of ion-exchanged glass as a verification measure for C/S measures and specifically tags and seals.
|
2 |
Safeguards for Uranium Extraction (UREX) +1a ProcessFeener, Jessica S. 2010 May 1900 (has links)
As nuclear energy grows in the United States and around the world, the expansion
of the nuclear fuel cycle is inevitable. All currently deployed commercial reprocessing
plants are based on the Plutonium - Uranium Extraction (PUREX) process. However,
this process is not implemented in the U.S. for a variety of reasons, one being that it is
considered by some as a proliferation risk. The 2001 Nuclear Energy Policy report
recommended that the U.S. "develop reprocessing and treatment technologies that are
cleaner, more efficient, less waste-intensive, and more proliferation-resistant." The
Uranium Extraction (UREX+) reprocessing technique has been developed to reach these
goals. However, in order for UREX+ to be considered for commercial implementation, a
safeguards approach is needed to show that a commercially sized UREX+ facility can be
safeguarded to current international standards.
A detailed safeguards approach for a UREX+1a reprocessing facility has been
developed. The approach includes the use of nuclear material accountancy (MA),
containment and surveillance (C/S) and solution monitoring (SM). Facility information
was developed for a hypothesized UREX+1a plant with a throughput of 1000 Metric
Tons Heavy Metal (MTHM) per year. Safeguard goals and safeguard measures to be
implemented were established. Diversion and acquisition pathways were considered;
however, the analysis focuses mainly on diversion paths. The detection systems used in
the design have the ability to provide near real-time measurement of special fissionable
material in feed, process and product streams. Advanced front-end techniques for the
quantification of fissile material in spent nuclear fuel were also considered. The
economic and operator costs of these systems were not considered. The analysis shows
that the implementation of these techniques result in significant improvements in the
ability of the safeguards system to achieve the objective of timely detection of the diversion of a significant quantity of nuclear material from the UREX+1a reprocessing
facility and to provide deterrence against such diversion by early detection.
|
Page generated in 0.1262 seconds