• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation

Haghshenas, Arash 03 October 2013 (has links)
The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster, outcomes of blowouts are unknown and should be studied before starting an operation. Plans should be available to prevent blowouts or provide safe and secure ways of controlling the well before the drilling operation starts. The plan should include procedures in case of any blowout incident as a proactive measure. A few commercial softwares are available in the industry for dynamic kill and transient modeling. All models are proprietary and very complex which reduces the flexibility of the program for specific cases. The purpose of this study is to develop a pseudo transient hydraulic simulator for dynamic kill operations. The idea and concept is to consider the flow of each phase as a single phase flow. The summation of hydrostatic and frictional pressure of each phase determines the bottomhole pressure during the dynamic kill operation. The simulator should be versatile and capable of handling special cases that may encounter during blowouts. Some of the main features of the proposed dynamic kill simulator include; quick and robust simulation, fluid properties are corrected for pressure and temperature, sensitivity analysis can be performed through slide bars, and capable of handling variety of wellbore trajectories. The results from the proposed simulator were compared to the result of commercial software, OLGA ABC. The results were in agreement with each other. It is recommended to apply the simulator for operations with required kill fluid volumes of one to two wellbore volumes.

Page generated in 0.1344 seconds