• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A CPS-Like Transformation of Continuation Marks

Germane, Kimball Richard 26 November 2012 (has links) (PDF)
Continuation marks are a programming language feature which generalize stack inspection. Despite its usefulness, this feature has not been adopted by languages which rely on stack inspection, e.g., for dynamic security checks. One reason for this neglect may be that continuation marks do not yet enjoy a transformation to the plain λ-calculus which would allow higher-order languages to provide continuation marks at little cost. We present a CPS-like transformation from the call-by-value λ-calculus augmented with continuation marks to the pure call-by-value λ-calculus. We discuss how this transformation simplifies the construction of compilers which treat continuation marks correctly. We document an iterative, feedback-based approach using Redex. We accompany the transformation with a meaning-preservation theorem.
2

A Natural Interpretation of Classical Proofs

Brage, Jens January 2006 (has links)
<p>In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK.</p><p>We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic.</p><p>The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic.</p><p>From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure.</p><p>The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation.</p><p>The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively.</p><p>We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.</p>
3

A Natural Interpretation of Classical Proofs

Brage, Jens January 2006 (has links)
In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK. We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic. The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic. From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure. The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation. The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively. We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.

Page generated in 0.0973 seconds