• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Properties and Behaviours of Fuzzy Cellular Automata

Betel, Heather 14 May 2012 (has links)
Cellular automata are systems of interconnected cells which are discrete in space, time and state. Cell states are updated synchronously according to a local rule which is dependent upon the current state of the given cell and those of its neighbours in a pre-defined neighbourhood. The local rule is common to all cells. Fuzzy cellular automata extend this notion to systems which are discrete in space and time but not state. In this thesis, we explore fuzzy cellular automata which are created from the extension of Boolean rules in disjunctive normal form to continuous functions. Motivated by recent results on the classification of these rules from empirical evidence, we set out first to show that fuzzy cellular automata can shed some light on classical cellular automata and then to prove that the observed results are mathematically correct. The main results of this thesis can be divided into two categories. We first investigate the links between fuzzy cellular automata and their Boolean counter-parts. We prove that number conservation is preserved by this transformation. We further show that Boolean additive cellular automata have a definable property in their fuzzy form which we call self-oscillation. We then give a probabilistic interpretation of fuzzy cellular automata and show that homogeneous asymptotic states are equivalent to mean field approximations of Boolean cellular automata. We then turn our attention the asymptotic behaviour of fuzzy cellular automata. In the second half of the thesis we investigate the observed behaviours of the fuzzy cellular automata derived from balanced Boolean rules. We show that the empirical results of asymptotic behaviour are correct. In fuzzy form, the balanced rules can be categorized as one of three types: weighted average rules, self-averaging rules, and local majority rules. Each type is analyzed in a variety of ways using a range of tools to explain their behaviours.
2

Properties and Behaviours of Fuzzy Cellular Automata

Betel, Heather 14 May 2012 (has links)
Cellular automata are systems of interconnected cells which are discrete in space, time and state. Cell states are updated synchronously according to a local rule which is dependent upon the current state of the given cell and those of its neighbours in a pre-defined neighbourhood. The local rule is common to all cells. Fuzzy cellular automata extend this notion to systems which are discrete in space and time but not state. In this thesis, we explore fuzzy cellular automata which are created from the extension of Boolean rules in disjunctive normal form to continuous functions. Motivated by recent results on the classification of these rules from empirical evidence, we set out first to show that fuzzy cellular automata can shed some light on classical cellular automata and then to prove that the observed results are mathematically correct. The main results of this thesis can be divided into two categories. We first investigate the links between fuzzy cellular automata and their Boolean counter-parts. We prove that number conservation is preserved by this transformation. We further show that Boolean additive cellular automata have a definable property in their fuzzy form which we call self-oscillation. We then give a probabilistic interpretation of fuzzy cellular automata and show that homogeneous asymptotic states are equivalent to mean field approximations of Boolean cellular automata. We then turn our attention the asymptotic behaviour of fuzzy cellular automata. In the second half of the thesis we investigate the observed behaviours of the fuzzy cellular automata derived from balanced Boolean rules. We show that the empirical results of asymptotic behaviour are correct. In fuzzy form, the balanced rules can be categorized as one of three types: weighted average rules, self-averaging rules, and local majority rules. Each type is analyzed in a variety of ways using a range of tools to explain their behaviours.
3

Properties and Behaviours of Fuzzy Cellular Automata

Betel, Heather January 2012 (has links)
Cellular automata are systems of interconnected cells which are discrete in space, time and state. Cell states are updated synchronously according to a local rule which is dependent upon the current state of the given cell and those of its neighbours in a pre-defined neighbourhood. The local rule is common to all cells. Fuzzy cellular automata extend this notion to systems which are discrete in space and time but not state. In this thesis, we explore fuzzy cellular automata which are created from the extension of Boolean rules in disjunctive normal form to continuous functions. Motivated by recent results on the classification of these rules from empirical evidence, we set out first to show that fuzzy cellular automata can shed some light on classical cellular automata and then to prove that the observed results are mathematically correct. The main results of this thesis can be divided into two categories. We first investigate the links between fuzzy cellular automata and their Boolean counter-parts. We prove that number conservation is preserved by this transformation. We further show that Boolean additive cellular automata have a definable property in their fuzzy form which we call self-oscillation. We then give a probabilistic interpretation of fuzzy cellular automata and show that homogeneous asymptotic states are equivalent to mean field approximations of Boolean cellular automata. We then turn our attention the asymptotic behaviour of fuzzy cellular automata. In the second half of the thesis we investigate the observed behaviours of the fuzzy cellular automata derived from balanced Boolean rules. We show that the empirical results of asymptotic behaviour are correct. In fuzzy form, the balanced rules can be categorized as one of three types: weighted average rules, self-averaging rules, and local majority rules. Each type is analyzed in a variety of ways using a range of tools to explain their behaviours.
4

A multi-modular dynamical cryptosystem based on continuous-interval cellular automata

Terrazas Gonzalez, Jesus David 04 January 2013 (has links)
This thesis presents a computationally efficient cryptosystem based on chaotic continuous-interval cellular automata (CCA). This cryptosystem increases data protection as demonstrated by its flexibility to encrypt/decrypt information from distinct sources (e.g., text, sound, and images). This cryptosystem has the following enhancements over the previous chaos-based cryptosystems: (i) a mathematical model based on a new chaotic CCA strange attractor, (ii) integration of modules containing dynamical systems to generate complex sequences, (iii) generation of an unlimited number of keys due to the features of chaotic phenomena obtained through CCA, which is an improvement over previous symmetric cryptosystems, and (iv) a high-quality concealment of the cryptosystem strange attractor. Instead of using differential equations, a process of mixing chaotic sequences obtained from CCA is also introduced. As compared to other recent approaches, this mixing process provides a basis to achieve higher security by using a higher degree of complexity for the encryption/decryption processes. This cryptosystem is tested through the following three methods: (i) a stationarity test based on the invariance of the first ten statistical moments, (ii) a polyscale test based on the variance fractal dimension trajectory (VFDT) and the spectral fractal dimension (SFD), and (iii) a surrogate data test. This cryptosystem secures data from distinct sources, while leaving no patterns in the ciphertexts. This cryptosystem is robust in terms of resisting attacks that: (i) identify a chaotic system in the time domain, (ii) reconstruct the chaotic attractor by monitoring the system state variables, (iii) search the system synchronization parameters, (iv) statistical cryptanalysis, and (v) polyscale cryptanalysis.
5

A multi-modular dynamical cryptosystem based on continuous-interval cellular automata

Terrazas Gonzalez, Jesus David 04 January 2013 (has links)
This thesis presents a computationally efficient cryptosystem based on chaotic continuous-interval cellular automata (CCA). This cryptosystem increases data protection as demonstrated by its flexibility to encrypt/decrypt information from distinct sources (e.g., text, sound, and images). This cryptosystem has the following enhancements over the previous chaos-based cryptosystems: (i) a mathematical model based on a new chaotic CCA strange attractor, (ii) integration of modules containing dynamical systems to generate complex sequences, (iii) generation of an unlimited number of keys due to the features of chaotic phenomena obtained through CCA, which is an improvement over previous symmetric cryptosystems, and (iv) a high-quality concealment of the cryptosystem strange attractor. Instead of using differential equations, a process of mixing chaotic sequences obtained from CCA is also introduced. As compared to other recent approaches, this mixing process provides a basis to achieve higher security by using a higher degree of complexity for the encryption/decryption processes. This cryptosystem is tested through the following three methods: (i) a stationarity test based on the invariance of the first ten statistical moments, (ii) a polyscale test based on the variance fractal dimension trajectory (VFDT) and the spectral fractal dimension (SFD), and (iii) a surrogate data test. This cryptosystem secures data from distinct sources, while leaving no patterns in the ciphertexts. This cryptosystem is robust in terms of resisting attacks that: (i) identify a chaotic system in the time domain, (ii) reconstruct the chaotic attractor by monitoring the system state variables, (iii) search the system synchronization parameters, (iv) statistical cryptanalysis, and (v) polyscale cryptanalysis.

Page generated in 0.3369 seconds