• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Riesz Representation Theorem

Williams, Stanley C. (Stanley Carl) 08 1900 (has links)
In 1909, F. Riesz succeeded in giving an integral represntation for continuous linear functionals on C[0,1]. Although other authors, notably Hadamard and Frechet, had given representations for continuous linear functionals on C[0,1], their results lacked the clarity, elegance, and some of the substance (uniqueness) of Riesz's theorem. Subsequently, the integral representation of continuous linear functionals has been known as the Riesz Representation Theorem. In this paper, three different proofs of the Riesz Representation Theorem are presented. The first approach uses the denseness of the Bernstein polynomials in C[0,1] along with results of Helly to write the continuous linear functionals as Stieltjes integrals. The second approach makes use of the Hahn-Banach Theorem in order to write the functional as an integral. The paper concludes with a detailed presentation of a Daniell integral development of the Riesz Representation Theorem.
2

Duals and Reflexivity of Certain Banach Spaces

Dahler, Cheryl L. (Cheryl Lewis) 08 1900 (has links)
The purpose of this paper is to explore certain properties of Banach spaces. The first chapter begins with basic definitions, includes examples of Banach spaces, and concludes with some properties of continuous linear functionals. In the second chapter, dimension is discussed; then one version of the Hahn-Banach Theorem is presented. The third chapter focuses on dual spaces and includes an example using co, RI, and e'. The role of locally convex spaces is also explored in this chapter. In the fourth chapter, several more theorems concerning dual spaces and related topologies are presented. The final chapter focuses on reflexive spaces. In the main theorem, the relation between compactness and reflexivity is examined. The paper concludes with an example of a non-reflexive space.

Page generated in 0.1139 seconds