1 |
Digital Twin Development and Advanced Process Control for Continuous Pharmaceutical ManufacturingYan-Shu Huang (9175667) 25 July 2023 (has links)
<p>To apply Industry 4.0 technologies and accelerate the modernization of continuous pharmaceutical manufacturing, digital twin (DT) and advanced process control (APC) strategies are indispensable. The DT serves as a virtual representation that mirrors the behavior of the physical process system, enabling real-time monitoring and predictive capabilities. Consequently, this facilitates the feasibility of real-time release testing (RTRT) and enhances drug product development and manufacturing efficiency by reducing the need for extensive sampling and testing. Moreover, APC strategies are required to address variations in raw material properties and process uncertainties while ensuring that desired critical quality attributes (CQAs) of in-process materials and final products are maintained. When deviations from quality targets are detected, APC must provide optimal real-time corrective actions, offering better control performance than the traditional open loop-control method. The progress in DT and APC is beneficial in shifting from the paradigm of Quality-by-Test (QbT) to that of Quality-by-Design (QbD) and Quality-by-Control (QbC), which emphasize the importance of process knowledge and real-time information to ensure product quality.</p>
<p><br></p>
<p>This study focuses on four key elements and their applications in a continuous dry granulation tableting process, including feeding, blending, roll compaction, ribbon milling and tableting unit operations. Firstly, the necessity of a digital infrastructure for data collection and integration is emphasized. An ISA-95-based hierarchical automation framework is implemented for continuous pharmaceutical manufacturing, with each level serving specific purposes related to production, sensing, process control, manufacturing operations, and business planning. Secondly, investigation of process analytical technology (PAT) tools for real-time measurements is highlighted as a prerequisite for effective real-time process management. For instance, the measurement of mass flow rate, a critical process parameter (CPP) in continuous manufacturing, was previously limited to loss-in-weight (LIW) feeders. To overcome this limitation, a novel capacitance-based mass flow sensor, the ECVT sensor, has been integrated into the continuous direct compaction process to capture real-time powder flow rates downstream of the LIW feeders. Additionally, the use of near-infrared (NIR)-based sensor for real-time measurement of ribbon solid fraction in dry granulation processes is explored. Proper spectra selection and pre-processing techniques are employed to transform the spectra into useful real-time information. Thirdly, the development of quantitative models that establish a link between CPPs and CQAs is addressed, enabling effective product design and process control. Mechanistic models and hybrid models are employed to describe the continuous direct compaction (DC) and dry granulation (DG) processes. Finally, applying APC strategies becomes feasible with the aid of real-time measurements and model predictions. Real-time optimization techniques are used to combine measurements and model predictions to infer unmeasured states or mitigate the impact of measurement noise. In this work, the moving horizon estimation-based nonlinear model predictive control (MHE-NMPC) framework is utilized. It leverages the capabilities of MHE for parameter updates and state estimation to enable adaptive models using data from the past time window. Simultaneously, NMPC ensures satisfactory setpoint tracking and disturbance rejection by minimizing the error between the model predictions and setpoint in the future time window. The MHE-NMPC framework has been implemented in the tableting process and demonstrated satisfactory control performance even when plant model mismatch exists. In addition, the application of MHE enables the sensor fusion framework, where at-line measurements and online measurements can be integrated if the past time window length is sufficient. The sensor fusion framework proves to be beneficial in extending the at-line measurement application from just validation to real-time decision-making.</p>
|
2 |
Towards the Implementation of Condition-based Maintenance in Continuous Drug Product Manufacturing SystemsRexonni B Lagare (8707320) 12 December 2023 (has links)
<p dir="ltr">Condition-based maintenance is a proactive maintenance strategy that prevents failures or diminished functionality in process systems through proper monitoring and management of process conditions. Despite being considered a mature maintenance management strategy in various industries, condition-based maintenance remains underutilized in pharmaceutical manufacturing. This situation needs to change, especially as the pharmaceutical industry continues to shift from batch to continuous manufacturing, where the implementation of CBM as a maintenance strategy assumes a greater importance.</p><p dir="ltr">This dissertation focused on addressing the challenges of implementing CBM in a continuous drug product manufacturing system. These challenges stem from the unique aspects of pharmaceutical drug product manufacturing, which includes the peculiar behavior of particulate materials and the evolutionary nature of pharmaceutical process development. The proposed solutions to address these challenges revolve around an innovative framework for the practical development of condition monitoring systems. Overall, this framework enables the incorporation of limited process knowledge in creating condition monitoring systems, which has the desired effect of empowering data-driven machine learning models.</p><p dir="ltr">A key feature of this framework is a formalized method to represent the process condition, which is usually vaguely defined in literature. This representation allows the proper mapping of preexisting condition monitoring systems, and the segmentation of the entire process condition model into smaller modules that have more manageable condition monitoring problems. Because this representation methodology is based on probabilistic graphical modelling, the smaller modules can then be holistically integrated via their probabilistic relationships, allowing the robust operation of the resulting condition monitoring system and the process it monitors.</p><p dir="ltr">Breaking down the process condition model into smaller segments is crucial for introducing novel fault detection capabilities, which enhances model prediction transparency and ensures prediction acceptance by a human operator. In this work, a methodology based on prediction probabilities was introduced for developing condition monitoring systems with novel fault detection capabilities. This approach relies on high-performing machine learning models capable of consistently classifying all the initially known conditions in the fault library with a high degree of certainty. Simplifying the condition monitoring problem through modularization facilitates this, as machine learning models tend to perform better on simpler systems. Performance indices were proposed to evaluate the novel fault detection capabilities of machine learning models, and a formal approach to managing novel faults was introduced.</p><p dir="ltr">Another benefit of modularization is the identification of condition monitoring blind spots. Applying it to the RC led to sensor development projects such as the virtual sensor for measuring granule flowability. This sensor concept was demonstrated successfully by using a data-driven model to predict granule flowability based on size and shape distribution measurements. With proper model selection and feature extraction guided by domain expertise, the resulting sensor achieved the best prediction performance reported in literature for granule flowability.</p><p dir="ltr">As a demonstration exercise in examining newly discovered faults, this work investigated a roll compaction phenomenon that is usually concealed from observation due to equipment design. This phenomenon results in the ribbon splitting along its thickness as it comes out of the rolls. In this work, important aspects of ribbon splitting were elucidated, particularly its predictability based on RC parameters and the composition of the powder blend used to form the ribbon. These findings have positive ramifications for the condition monitoring of the RC, as correspondence with industrial practitioners suggests that a split ribbon is desirable in some cases, despite being generally regarded as undesirable in the limited literature available on the subject.</p><p dir="ltr">Finally, this framework was primarily developed for the pharmaceutical dry granulation line, which consists of particle-based systems with a moderate level of complexity. However, it was also demonstrated to be feasible for the Tennessee Eastman Process (TEP), a more complex liquid-gas process system with a greater number of process faults, variables, and unit operations. Applying the framework resulted in machine learning models that yielded one of the best fault detection performances reported in literature for the TEP, while also introducing additional capabilities not yet normally reported in literature, such as fault diagnosis and novel fault detection.</p>
|
Page generated in 0.1517 seconds