• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic unfolding and homogenization of evolutionary gradient systems

Varga, Mario 12 August 2019 (has links)
The mathematical theory of homogenization deals with the rigorous derivation of effective models from partial differential equations with rapidly-oscillating coefficients. In this thesis we deal with modeling and homogenization of random heterogeneous media. Namely, we obtain stochastic homogenization results for certain evolutionary gradient systems. In particular, we derive continuum effective models from discrete networks consisting of elasto-plastic springs with random coefficients in the setting of evolutionary rate-independent systems. Also, we treat a discrete counterpart of gradient plasticity. The second type of problems that we consider are gradient flows. Specifically, we study continuum gradient flows driven by λ-convex energy functionals. In stochastic homogenization the derived deterministic effective equations are typically hardly-accessible for standard numerical methods. For this reason, we study approximation schemes for the effective equations that we obtain, which are well-suited for numerical analysis. For the sake of a simple treatment of these problems, we introduce a general procedure for stochastic homogenization – the stochastic unfolding method. This method presents a stochastic counterpart of the well-established periodic unfolding procedure which is well-suited for homogenization of media with periodic microstructure. The stochastic unfolding method is convenient for the treatment of equations driven by integral functionals with random integrands. The advantage of this strategy in regard to other methods in homogenization is its simplicity and the elementary analysis that mostly relies on basic functional analysis concepts, which makes it an easily accessible method for a wide audience. In particular, we develop this strategy in the setting that is suited for problems involving discrete-to-continuum transition as well as for equations defined on a continuum physical space. We believe that the stochastic unfolding method may also be useful for problems outside of the scope of this work.

Page generated in 0.1085 seconds