• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Robust Cooperative Strategy for Contour Matching Using Epipolar Geometry

Yuan, Miaolong, Xie, Ming, Yin, Xiaoming 01 1900 (has links)
Feature matching in images plays an important role in computer vision such as for 3D reconstruction, motion analysis, object recognition, target tracking and dynamic scene analysis. In this paper, we present a robust cooperative strategy to establish the correspondence of the contours between two uncalibrated images based on the recovered epipolar geometry. We take into account two representations of contours in image as contour points and contour chains. The method proposed in the paper is composed of the following two consecutive steps: (1) The first step uses the LMedS method to estimate the fundamental matrix based on Hartley’s 8-point algorithm, (2) The second step uses a new robust cooperative strategy to match contours. The presented approach has been tested with various real images and experimental results show that our method can produce more accurate contour correspondences. / Singapore-MIT Alliance (SMA)
2

Fast Contour Matching Using Approximate Earth Mover's Distance

Grauman, Kristen, Darrell, Trevor 05 December 2003 (has links)
Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.
3

Fast Contour Matching Using Approximate Earth Mover's Distance

Grauman, Kristen, Darrell, Trevor 05 December 2003 (has links)
Weighted graph matching is a good way to align a pair of shapesrepresented by a set of descriptive local features; the set ofcorrespondences produced by the minimum cost of matching features fromone shape to the features of the other often reveals how similar thetwo shapes are. However, due to the complexity of computing the exactminimum cost matching, previous algorithms could only run efficientlywhen using a limited number of features per shape, and could not scaleto perform retrievals from large databases. We present a contourmatching algorithm that quickly computes the minimum weight matchingbetween sets of descriptive local features using a recently introducedlow-distortion embedding of the Earth Mover's Distance (EMD) into anormed space. Given a novel embedded contour, the nearest neighborsin a database of embedded contours are retrieved in sublinear time viaapproximate nearest neighbors search. We demonstrate our shapematching method on databases of 10,000 images of human figures and60,000 images of handwritten digits.
4

ON CLOSE CONTOUR PRESENTATION AND MATCHING PROBLEMS WITH BIOMEDICAL IMAGE APPLICATIONS

TANG, YINGJIE 11 October 2001 (has links)
No description available.
5

Research and Development of DSP Based System for Tracking An Arbitrary-Shaped Object

Lin, Wei-Ting 12 July 2005 (has links)
A DSP-based system is developed in this thesis for tracking ¡§an arbitrary-shaped object¡¨. It uses CCD camera to capture images, and detects in the video sequence. When we want to track a target that we interest, we can make the target in the view of camera. If the target move, the system will lock it and extract its contour by using active contour model. After extracting contour, the system will start to track target and shows the locked image on the LCD screen. The tracking system includes three sub-systems : ¡§Moving Object Detection¡¨, ¡§Active Contour Model¡¨, and ¡§Contour Matching¡¨. From the results of experiment, it can meet the expectation and gain good performance and robustness.
6

Local Adaptive Slicing for Layered Manufacturing

Tyberg, Justin 02 March 1998 (has links)
Existing layered manufacturing systems fabricate parts using a constant build layer thickness. Hence, operators must compromise between rapid production with large surface inaccuracies, and slow production with high precision, by choosing between thick and thin build layers, respectively. Adaptive layered manufacturing methods alleviate this decision by automatically adjusting the build layer thickness to accommodate surface geometry, thereby potentially enabling part fabrication in significantly less time. Unfortunately, conventional adaptive layered manufacturing techniques are often unable to realize this potential when transitioning from the laboratory to an industrial setting. The problem is that they apply the variable build layer thickness uniformly across each horizontal build plane, applying the same build layer thickness to all parts and part features across that plane even though they have different build layer thickness needs. When this happens, the advantage of using adaptive build layer thicknesses is lost. This thesis demonstrates how to minimize fabrication times when implementing adaptive layered manufacturing. Specifically, it presents a new method in which each part or individual part feature is assigned a distinct, independent build layer thickness according to its particular surface geometry. Additionally, this thesis presents a calibration procedure for the Fused Deposition Modeler (FDM) rapid prototyping system that enables accurate, adaptively sliced parts to be physically realizable. Experimental software has been developed and sample parts have been fabricated to demonstrate both aspects of this work. / Master of Science

Page generated in 0.1111 seconds