• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 48
  • 7
  • Tagged with
  • 155
  • 155
  • 65
  • 56
  • 35
  • 34
  • 31
  • 27
  • 25
  • 23
  • 22
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caractérisation de l'état de corrosion des aciers dans le béton par cartographie de potentiel / Characterization of the corrosion of steels in concrete by potential mapping

Garcia, Sylvain 20 September 2017 (has links)
La cartographie de potentiel est couramment utilisée afin de détecter les zones de corrosion à risque dans les ouvrages en béton armé. Cette méthode utilise une électrode de référence positionnée à la surface du béton afin de mesurer la différence de potentiel entre un point à la surface du béton et une connexion au réseau d'armatures. Toutefois, il existe deux inconvénients majeurs à cette technique : la connexion au treillis d'armatures qui nécessite d'y avoir accès et la vérification de sa continuité électrique dans la zone de mesure. Dans le but de ne plus être soumis à ces inconvénients, une nouvelle méthode est proposée. Au lieu de se connecter au treillis, une seconde électrode de référence est utilisée, elle aussi positionnée à la surface du béton étudié. Cette configuration de mesure ne donne plus des potentiels électriques, mais des gradients de potentiel entre les deux électrodes de mesure. Par la mise en place de simulations numériques et d'essais expérimentaux, cette configuration de mesure est étudiée. En ce qui concerne le travail expérimental, deux dalles de béton armé de 3x3x0,15m ont été coulées afin d'être proche des conditions rencontrées sur site. Ensuite que des zones corrodées, dont la taille est contrôlée, sont créées de manière accélérée à l'aide d'un dispositif de migration de chlorures. L'épaisseur d'enrobage de la dalle ayant une influence sur les mesures, il a été choisi de couler deux dalles. La première dalle comporte un treillis dont l'épaisseur d'enrobage est constante alors que la seconde dalle possède une épaisseur d'enrobage variable. En ce qui concerne la modélisation, une étude paramétrique utilisant la méthode des éléments finis est réalisée. Cette modélisation permet l'étude de l'influence de nombreux paramètres tels que la résistivité, la taille de la zone corrodée, l'épaisseur d'enrobage, le procédé de mesure, etc. C'est l'analyse des courants d'échange, mais aussi des cartographies de potentiels et de gradients de potentiel qui permettent la corrélation entre les résultats expérimentaux et de simulation. C'est alors qu'il est possible de conclure sur la faisabilité de cette méthode et de ses avantages par comparaison avec la mesure classique. / Half-cell potential mapping is commonly used to detect corrosion risks in reinforced concrete structures. This method uses a reference electrode positioned on the surface of concrete for measuring potential difference by using a voltmeter connected to the reinforcement. However, there are two major drawbacks in the implementation of this method: the necessity to make an electrical connection to the reinforcement and the electrical continuity of this reinforcement. In order to overcome these disadvantages, a new method is proposed. Instead of using electrical connection to rebar, a second reference electrode is used, also positioned on the surface. These two electrodes configuration gives the electrical potential gradient on the concrete surface. By performing both experimental work and numerical modelling this method configuration is tested. For experimental work, two reinforced concrete slabs (3x3x0.15 meter sized) were cast to be close to actual structural conditions. The corroded areas are created with an accelerated method, using the migration of chloride ions. Corrosion size and localisation are controlled during the experiment. The thickness of the concrete cover has an influence on the measures, for this reason in the first slab reinforcement depth is fixed, while it is variable in the second slab. Concerning modelling, a parametric study using a finite element model is performed. This model allows the study of the influence of several parameters such as resistivity, corroded area size, concrete cover and also the measurement process. It is the analysis of the corrosion current, as well as potential mapping that allows the correlation between the experimental and modelling results. Discussion of both results concludes on the feasibility of this method and confirms its benefits compared to the usual half-cell potential mapping.
12

Quantitative analysis of defects in composite material by means of optical lockin thermography / Analyse quantitative de défauts dans des pièces en matériau composite par la méthode de thermographie lockin

Zöcke, Christine 11 June 2010 (has links)
Les matériaux composites carbone-époxy connaissent un intérêt grandissant dans le domaine de l'aéronautique. Des tests de contrôle non-destructif permettent de détecter des défauts. Ce travail s'attache particulièrement au contrôle non-destructif de matériaux composite carbone-époxy par la thermographie optique lockin. Il élargit le domaine de l'analyse quantitative des mesures thermographiques. Les paramètres géométriques tels la profondeur, la taille et la forme des défauts sont déterminés dans des pièces en matériau composite anisotrope et globalement homogène. Dans un but d'évaluation quantitative des défauts, des techniques de traitement d'image sont appliquées à des images de longues pièces aéronautiques pour former des vues panoramiques. Des images thermiques prises avant et après chargement mécanique sont superposées afin de pouvoir déterminer un endommagement. Différentes images thermale (lockin et excitation ultrasonore) sont fusionnées afin d'obtenir plus d'information sur des défauts du type impacts. La formation d'images est modélisée par une fonction de point qui dépend de la profondeur du défaut et de la fréquence de modulation. Un modèle est calculé en utilisant des fonctions de Green et adapté à des matériaux anisotropes. Les grandeurs : profondeur, taille et forme du défaut sont déterminées par des problèmes inverses. Les mesures sont comparées aux simulations numériques et un algorithme de reconstruction des défauts planaires est validé / In the aerospace industry, carbon-ber reinforced plastic (CFRP) materials are becoming increasingly popular. Due to mechanical fracture and hence safety related issues, CFRP components must be inspected for defects with non-destructive methods. This thesis focuses on non-destructive testing of CFRP materials with optical lockin thermography. The eld of quantitative analysis of thermographic measurements is enhanced. The data of geometrical parameters e.g. depth, size and shape of defects in structures of globally homogeneous and anisotropic CFRP materials is required for fracture mechanics. To evaluate defects in a quantitative way, image processing algorithms are applied to thermographic phase images in order to get panoramic views of extended aircraft parts and to compare measurements before and after a fatigue load in order to determine potential defect growth. Images of lockin and ultrasound excited thermography are combined with data-fusion techniques to get improved information on defects such as impacts. The image formation process can be modeled through a point-spread function, which depends on the depth of the defect and the modulation frequency. A function is computed by using Green's functions and is adapted to anisotropic materials. The quantities depth, size and shape of a defect are determined through inverse numerical lters. Measurements are compared to numerical simulations and a reconstruction algorithm of planar subsurface defects is validated
13

Automatic defect detection and depth estimation using pulsed thermography

Hedayati Vahid, Peyman 20 April 2018 (has links)
L’évaluation non-destructive (END) est une branche de la science qui s’intéresse à l’uniformité, la qualité et la conformité des matériaux et les composants qu’ils servent à construire. Les techniques de END visent à repérer et à mesurer les caractéristiques principales des matériaux sans en affecter ou à en détruire la structure ou la fonctionnalité. L’END permet d’observer les propriétés internes des pièces et de détecter les défauts sous leur surface. Cette approche est devenue graduellement une technologie importante pour garantir la sécurité et la fiabilité de plusieurs composantes de système en design, en fabrication et en développement de produits. La thermographie infrarouge est une approche d’END sans contact rapide qui utilise des caméras thermiques. Elle permet de détecter l’énergie thermique émise par les objets et à en afficher la distribution en température de la surface du spécimen sous observation. Dans ce projet, notre objectif est d’exploiter la thermographie infrarouge pour détecter les défauts sous la surface des objets. Plus spécialement, nous nous intéressons à la localisation des défauts et à l’estimation de leur profondeur sous la surface. Le manuscrit présente une investigation de différentes méthodes de localisation de défauts et de mesure de leur profondeur des défauts sous la surface pour différentes catégories de matériaux. / Non-Destructive Testing (NDT) is an aspect of science concerning on uniformity, quality and serviceability of materials and their components. NDT techniques attempt to inspect and measure significant features of materials without changing or destroying their structure or functionality. NDT makes it possible to observe the internal properties of parts and detect the undersurface defects. NDT has progressively become an important technology to assure safety and reliability of many system components in the design, manufacturing and development areas. Infrared thermography is essentially a fast non-contact NDT inspection method that uses thermographic cameras. This technique detects the infrared energy emitted from objects and displays the corresponding temperature distributions on the specimen. In this project, we aim to use infrared thermography for detecting subsurface defects. Localizing the defects and estimating their depths are the important problems to be addressed in our research project. The manuscript investigates different methods related to these challenges.
14

3D modeling of large elongated structures for non-destructive testing and inspection

Hesabi, Somayeh 24 April 2018 (has links)
Selon un rapport de l’Agence centrale de renseignement (CIA) ¹, présenté dans un journal NDT ², il y avait un total de 3.3 millions km de pipelines dans 120 pays du monde en 2014. Cela signifie que les pipelines ont un rôle important à jouer dans l’infrastructure de l’énergie pour le transport de liquides ou du gaz naturel. Bien que les pipelines représentent le plus efficace et le plus fiable pour transporter divers liquides allant de l’eau à l’huile, ils sont vulnérables aux défauts externes et internes. Heureusement, une inspection périodique des pipelines peut augmenter leur sécurité et leur fonctionnalité et réduire les catastrophes environnementales ainsi que les pertes économiques causées par les potentielles explosions ou autres dysfonctionnements. Considérant les avantages des capteurs 3D qui permettent de créer une réplique numérique précise de la surface des objets réels en plus des avantages de la technologie d’Evaluation Non Destructive (END) qui fournit un suivi des défauts sous la surface, la présente recherche propose une solution visant à construire un modèle 3D d’un pipeline ou d’autres structures allongées pour suivre leur état. Dans ce but, nous mesurons d’abord la géométrie du pipeline avec des capteurs 3D portables et construisons le modèle 3D de la structure. Ensuite, les informations des défauts sous la surface qui sont estimées efficacement par des approches développées par d’autres membres de l’équipe en utilisant la thermographie infrarouge sont intégrées au modèle 3D reconstruit. Le manuscrit étudie différents défis liés à la modélisation 3D précise de grandes structures allongées et la répétabilité de l’approche de modélisation à des fins de contrôle de qualité et d’entretien à long terme. 1. The World Factbook, updated 18 May 2015. 2. Materials Evaluation (M.E.), vol. 73, no. 7, July 2015 / According to a Central Intelligence Agency (CIA) report ¹ presented in a flagship NDT journal ², there were a total of 3.3 million km of pipelines present in 120 countries in the world in 2014. This means that pipelines play an important role in the energy infrastructure in order to safely transport liquid or natural gas. Although pipelines are the most efficient and reliable way to carry various liquids ranging from water to oil, they are vulnerable to external and internal damages. Fortunately, a periodic inspection of pipelines can increase their functionality and decrease the environmental disasters as well as economic losses caused by potential spills, explosions or other malfunctions. In this context of the exploitation of pipelines and other similar elongated structures and considering the benefits of 3D sensors which allow us to create an accurate digital replica of the surface of physical objects in addition to the advantages of Non-Destructive Testing (NDT) technology which provides the ability of under-surface monitoring, our research proposes a solution to build a 3D model of pipeline or other elongated structures to monitor their status. For this purpose, we first measure the geometry of the pipeline by handheld 3D scanners and construct the 3D model of the structure. Then, the information of subsurface defects that is estimated efficiently by approaches developed by other team members using infrared thermography is integrated to the reconstructed 3D model. The manuscript investigates different challenges related to the 3D modeling of large elongated structures with high accuracy and repeatability for quality control purposes as well as for long-term maintenance. 1. The World Factbook, updated 18 May 2015. 2. Materials Evaluation (M.E.), vol. 73, no. 7, July 2015
15

Détection des défauts du bois franc et du bois mou par effet trachéïde

Rivet-Sabourin, Geoffroy 05 July 2019 (has links)
L’augmentation de productivité et de capacité de production est aujourd’hui au coeur des problématiques industrielles. Ceci touche particulièrement l’industrie forestière qui cherche depuis de nombreuses années à accroître sa productivité par, entre autres, des méthodes d’automatisation appliquées à leur processus de transformation du bois. Pour automatiser les méthodes d’inspection industrielle, plusieurs voies ont été empruntées jusqu’à ce jour : photométrie, ultrason, rayon-X, thermographie, etc . La technique présentée ici, l’effet trachéïde, utilise les caractéristiques de diffusion d’un laser dans les fibres de bois pour faire ressortir la densité et la direction du grain du bois. Cette technique produit rapidement une image en tons de gris de la pièce. À partir de cette image plusieurs méthodes ont été développées afin de faire ressortir les défauts sur la pièce. Une méthode de fusion des données a été mise au point afin de faire le regroupement des résultats des différentes techniques de détection. Finalement, une méthode de détection de contours adaptée à la détection des noeuds a été explorée. / Québec Université Laval, Bibliothèque 2019
16

Comparative study of infrared thermography, ultrasonic C-scan, X-ray computed tomography and terahertz imaging on composite materials

Zhang, Hai 23 September 2019 (has links)
L’évaluation non destructive (NDT) des matériaux composites est compliquée en raison de la vaste gamme de défauts rencontrés (y compris délaminage, microfissuration, fracture de la fibre, retrait des fibres, fissuration matricielle, inclusions, vides et dommages aux chocs). La capacité de caractériser quantitativement le type, la géométrie et l’orientation des défauts est essentielle. La thermographie infrarouge (IRT), en tant que technique de diagnostic d’image, peut satisfaire le besoin industriel croissant de NDT&E. Dans la thèse, la thermographie par excitation optique et mécanique a été utilisée pour étudier différents matériaux composites, dont 1) des préformes sèches en fibres de carbone, 2) des composites de fibres naturelles, 3) des composites hybrides de basalte-fibres de carbone soumis à une charge d’impact (séquence de type sandwich et séquence d’empilement intercalé), 4) des défauts micro-dimensionnés dans un composite polymère renforcé de fibre de carbone (CFRP) en 3D avec une couture de type « joint en T », et 5) des peintures sur toile qui peuvent être considérées comme des matériaux composites. Une nouvelle technique IRT de thermographie de ligne par micro-laser (micro-LLT) a été proposée pour l’évaluation des porosités submillimétriques dans le CFRP. La microscopie de points par micro-laser (micro-LST) et la micro-vibrothermographie (micro-VT) ont également été présentées avec l’utilisation de microlentilles. La thermographie pulsée (PT) et la thermographie modulée « à verrouillage » (LT) ont été comparées à la tomographie par rayons X (TC) pour validation. Le C-scan ultrasonore (UT) et l’imagerie par ondes tera-hertziennes en onde continue (CW THz) ont également été réalisés à des fins comparatives. L’inspection par techniques thermographiques est une question ouverte à discuter pour le public scientifique. En fait, la thermographie par impulsions (PPT) basée sur la transformation de phase a été utilisée pour estimer la profondeur des dommages. Pour traiter les données thermographiques, on a également utilisé la reconstruction de signal thermographique de base (B-TSR), la thermographie des composants principaux (PCT) et la thermographie des moindres carrés partiels (PLST). Enfin, une analyse complète et comparative basée sur le diagnostic d’images thermographiques a été menée en vue d’applications industrielles potentielles. / Non-destructive testing (NDT) of composite materials is complicated due to the wide range off laws encountered (including delamination, micro-cracking, fiber fracture, fiber pullout, matrix cracking, inclusions, voids, and impact damage). The ability to quantitatively characterize the type, geometry, and orientation of flaws is essential. Infrared thermography (IRT), as an image diagnostic technique, can satisfy the increasing industrial need for NDT&E. In the thesis, optical and mechanical excitation thermography were used to investigate different composite materials, including 1) carbon fiber dry preforms, 2) natural fiber composites, 3) basalt-carbon fiber hybrid composites subjected to impact loading (sandwich-like and intercalated stacking sequence), 4) micro-sized flaws in a stitched T-joint 3D carbon fiber reinforced polymer composite (CFRP), and 5) paintings on canvas which can be considered as composite materials. Of particular interest, a new IRT technique micro-laser line thermography (micro-LLT) was proposed for the evaluation of submillimeter porosities in CFRP. Micro-laser spot thermography (micro-LST) and micro-vibrothermography (micro-VT) were also presented with the usage of a micro-lens. Pulsed thermography (PT) and lock-in thermography (LT) were compared with x-ray computed tomography (CT) for validation. Ultrasonic C-scan (UT) and continuous wave terahertz imaging (CW THz) were also conducted for the comparative purpose. The inspection by thermographic techniques is an open matter to be discussed for the scientific audience. In fact, pulse phase thermography (PPT) based on phase transform was used to estimate the damage depth. Basic thermographic signal reconstruction (B-TSR), principal component thermography (PCT) and partial least squares thermography (PLST) (another more recent advanced image processing technique) were also used to pro-cess the thermographic data. Finally, a comprehensive and comparative analysis based on thermographic image diagnostics was conducted in view of potential industrial applications.
17

Development of IRT NDT technique for the inspection of composites materials for aerospace and other industries

Ebrahimi, Samira 13 December 2023 (has links)
Thèse ou mémoire avec insertion d’articles / De nos jours, les industries se concentrent davantage sur le développement de matériaux respectueux de l'environnement pour améliorer la sécurité, réduire le poids, augmenter l'efficacité énergétique et réduire la contamination. La fibre de carbone renforce les plastiques (CFRP) en raison de ses caractéristiques uniques telles qu'un rapport résistance / poids élevé, une bonne résistance à la corrosion et une résistance élevée à la fatigue elle fait partie des matériaux préférables dans l'industrie. En tant qu'outil de contrôle de la qualité et de gestion de l'assurance de la qualité, les Contrôle non destructif (CND) jouent un rôle vital dans des secteurs tels que l'aérospatiale, les pipelines et les ponts, car ils peuvent aider à prévenir les défaillances susceptibles de nuire à la sécurité, à la fiabilité et à l'environnement. La thermographie pulsée active (PT) est une technique de test non destructif pour l'inspection des matériaux et des structures dans la science et l'industrie. Plusieurs algorithmes de traitement ont été développés pour améliorer et valoriser les données thermographiques captées afin de détecter les anomalies et de les caractériser précisément. L'analyse robuste en composantes principales (RPCA) via la décomposition en matrices de faible rang et clairsemées présente un cadre puissant pour de nombreuses applications telles que le traitement d'images, le traitement vidéo et la vision par ordinateur 3D. Le Robust-PCA proposé est une approche de réduction de dimensionnalité et surpasse la méthode PCA. De plus, la matrice de bas rang extraite de Robust-PCA utilisant un multiplicateur de Lagrange augmenté inexact (IALM) réduit le bruit des données brutes. Différentes approches de traitement sont proposées pour détecter et caractériser les irrégularités des structures produites lors de la fabrication et en service. Robust-PCA via IALM peut être utilisé comme pré-traitement et post-traitement sur des approches de pointe (c'est-à-dire PCT, PPT et PLST) pour réduire le bruit sur les données thermographiques. Le contraste au bruit (CNR) et le coefficient de similarité s'améliorent nettement lorsque le RPCA est utilisé comme prétraitement. Cependant, le post-traitement sur la sortie PLST montre une amélioration des résultats finaux. En outre, des modèles d'apprentissage automatique tels que les auto-encodeurs (AE) pour la surveillance de données non linéaires complexes ont été étudiés. L'application d'un auto-encodeur sous-complet avec un accent sur la détection de défauts montre des résultats comparables aux approches traditionnelles, c'est-à-dire PCA. Afin d'augmenter la fiabilité et l'applicabilité de l'Thermographie Infrarouge pour une inspection structurelle efficace, la classification des défauts existants et l'estimation de la profondeur, le bag-of-feature (BoF) a été utilisé. Les résultats ont représenté que la méthode proposée peut avoir une estimation raisonnable des défauts et une classification parmi trois types de trous à fond plat, d'insert en Téflon et d'extraction. / Nowadays, industries are more focused on developing environmentally friendly materials to improve safety, reduce weight, increase fuel efficiency, and lower contamination. Carbon fiber reinforces plastics (CFRP) due to its unique features such as high strength-to-weight ratio, good corrosion resistance, and high fatigue resistance is among the preferable material in the industry. As a quality control and quality assurance management tool, NDT plays a vital role in industries such as aerospace, pipelines, and bridges, as it can help prevent failures that could harm safety, reliability, and the environment. Active pulsed thermography (PT) is a non-destructive testing technique for material and structure inspection in science and industry. Several processing algorithms have been developed to improve and enhance the captured thermographic data to detect anomalies and characterize them precisely. Robust principal component analysis (RPCA) via decomposition into low-rank and sparse matrices present a powerful framework for many applications such as image processing, video processing, and 3-D computer vision. The proposed Robust-PCA is a dimensionality reduction approach and outperforms the PCA method. Moreover, the extracted low-rank matrix from Robust-PCA using inexact augmented Lagrange multiplier (IALM) reduces the noise of raw data. Different processing approaches are proposed to detect and characterize the irregularities in structures produced during manufacturing and in-service. Robust-PCA via IALM can be used as pre-processing and post-processing on state-of-the-art approaches (i.e., PCT, PPT, and PLST) to reduce the noise on thermographic data. The contrast-to-noise ratio (CNR) and similarity coefficient clearly improve when RPCA is employed as pre-processing. However, post-processing on PLST output shows improvement in final results. Furthermore, machine learning models like autoencoders (AEs) for monitoring complex nonlinear data have been investigated. The application of an undercomplete-autoencoder with a focus on fault detection shows comparable results with traditional approaches, i.e., PCA. In order to increase the reliability and applicability of IRT for effective structural inspection, classification of existing defects, and depth estimation, bag-of-feature (BoF) has been utilized. Results have represented that the proposed method can have a reasonable estimation of defects and classification among three types of flat-bottom-hole, Teflon-insert, and pull-out.
18

Comparative study of infrared thermography, ultrasonic C-scan, X-ray computed tomography and terahertz imaging on composite materials

Zhang, Hai 20 September 2019 (has links)
L’évaluation non destructive (NDT) des matériaux composites est compliquée en raison de la vaste gamme de défauts rencontrés (y compris délaminage, microfissuration, fracture de la fibre, retrait des fibres, fissuration matricielle, inclusions, vides et dommages aux chocs). La capacité de caractériser quantitativement le type, la géométrie et l’orientation des défauts est essentielle. La thermographie infrarouge (IRT), en tant que technique de diagnostic d’image, peut satisfaire le besoin industriel croissant de NDT&E. Dans la thèse, la thermographie par excitation optique et mécanique a été utilisée pour étudier différents matériaux composites, dont 1) des préformes sèches en fibres de carbone, 2) des composites de fibres naturelles, 3) des composites hybrides de basalte-fibres de carbone soumis à une charge d’impact (séquence de type sandwich et séquence d’empilement intercalé), 4) des défauts micro-dimensionnés dans un composite polymère renforcé de fibre de carbone (CFRP) en 3D avec une couture de type « joint en T », et 5) des peintures sur toile qui peuvent être considérées comme des matériaux composites. Une nouvelle technique IRT de thermographie de ligne par micro-laser (micro-LLT) a été proposée pour l’évaluation des porosités submillimétriques dans le CFRP. La microscopie de points par micro-laser (micro-LST) et la micro-vibrothermographie (micro-VT) ont également été présentées avec l’utilisation de microlentilles. La thermographie pulsée (PT) et la thermographie modulée « à verrouillage » (LT) ont été comparées à la tomographie par rayons X (TC) pour validation. Le C-scan ultrasonore (UT) et l’imagerie par ondes tera-hertziennes en onde continue (CW THz) ont également été réalisés à des fins comparatives. L’inspection par techniques thermographiques est une question ouverte à discuter pour le public scientifique. En fait, la thermographie par impulsions (PPT) basée sur la transformation de phase a été utilisée pour estimer la profondeur des dommages. Pour traiter les données thermographiques, on a également utilisé la reconstruction de signal thermographique de base (B-TSR), la thermographie des composants principaux (PCT) et la thermographie des moindres carrés partiels (PLST). Enfin, une analyse complète et comparative basée sur le diagnostic d’images thermographiques a été menée en vue d’applications industrielles potentielles. / Non-destructive testing (NDT) of composite materials is complicated due to the wide range off laws encountered (including delamination, micro-cracking, fiber fracture, fiber pullout, matrix cracking, inclusions, voids, and impact damage). The ability to quantitatively characterize the type, geometry, and orientation of flaws is essential. Infrared thermography (IRT), as an image diagnostic technique, can satisfy the increasing industrial need for NDT&E. In the thesis, optical and mechanical excitation thermography were used to investigate different composite materials, including 1) carbon fiber dry preforms, 2) natural fiber composites, 3) basalt-carbon fiber hybrid composites subjected to impact loading (sandwich-like and intercalated stacking sequence), 4) micro-sized flaws in a stitched T-joint 3D carbon fiber reinforced polymer composite (CFRP), and 5) paintings on canvas which can be considered as composite materials. Of particular interest, a new IRT technique micro-laser line thermography (micro-LLT) was proposed for the evaluation of submillimeter porosities in CFRP. Micro-laser spot thermography (micro-LST) and micro-vibrothermography (micro-VT) were also presented with the usage of a micro-lens. Pulsed thermography (PT) and lock-in thermography (LT) were compared with x-ray computed tomography (CT) for validation. Ultrasonic C-scan (UT) and continuous wave terahertz imaging (CW THz) were also conducted for the comparative purpose. The inspection by thermographic techniques is an open matter to be discussed for the scientific audience. In fact, pulse phase thermography (PPT) based on phase transform was used to estimate the damage depth. Basic thermographic signal reconstruction (B-TSR), principal component thermography (PCT) and partial least squares thermography (PLST) (another more recent advanced image processing technique) were also used to pro-cess the thermographic data. Finally, a comprehensive and comparative analysis based on thermographic image diagnostics was conducted in view of potential industrial applications.
19

Probability of detection analysis for infrared nondestructive testing and evaluation with applications including a comparison with ultrasonic testing

Duan, Yuxia 20 April 2018 (has links)
La fiabilité d'une technique d’Évaluation Non-Destructive (END) est l'un des aspects les plus importants dans la procédure globale de contrôle industriel. La courbe de la Probabilité de Détection (PdD) est la mesure quantitative de la fiabilité acceptée en END. Celle-ci est habituellement exprimée en fonction de la taille du défaut. Chaque expérience de fiabilité en END devrait être bien conçue pour obtenir l'ensemble de données avec une source valide, y compris la technique de Thermographie Infrarouge (TI). La gamme des valeurs du rapport de l'aspect de défaut (Dimension / profondeur) est conçue selon nos expériences expérimentales afin d’assurer qu’elle vient du rapport d’aspect non détectable jusqu’à celui-ci soit détectable au minimum et plus large ensuite. Un test préliminaire est mis en œuvre pour choisir les meilleurs paramètres de contrôle, telles que l'énergie de chauffage, le temps d'acquisition et la fréquence. Pendant le processus de traitement des images et des données, plusieurs paramètres importants influent les résultats obtenus et sont également décrits. Pour la TI active, il existe diverses sources de chauffage (optique ou ultrason), des formes différentes de chauffage (pulsé ou modulé, ainsi que des méthodes différentes de traitement des données. Diverses approches de chauffage et de traitement des données produisent des résultats d'inspection divers. Dans cette recherche, les techniques de Thermographie Pulsée (TP) et Thermographie Modulée(TM) seront impliquées dans l'analyse de PdD. Pour la TP, des courbes PdD selon différentes méthodes de traitement de données sont comparées, y compris la Transformation de Fourier, la Reconstruction du Signal thermique, la Transformation en Ondelettes, le Contraste Absolu Différentiel et les Composantes Principales en Thermographie. Des études systématiques sur l'analyse PdD pour la technique de TI sont effectuées. Par ailleurs, les courbes de PdD en TI sont comparées avec celles obtenues par d'autres approches traditionnelles d’END. / The reliability of a Non-Destructive Testing and Evaluation (NDT& E) technique is one of the most important aspects of the overall industrial inspection procedure. The Probability of Detection (PoD) curve is the accepted quantitative measure of the NDT& E reliability, which is usually expressed as a function of flaw size. Every reliability experiment of the NDT& E system must be well designed to obtain a valid source data set, including the infrared thermography (IRT) technique. The range of defect aspect ratio (Dimension / depth) values is designed according to our experimental experiences to make sure it is from non-detectable to minimum detectable aspect ratio and larger. A preliminary test will be implemented to choose the best inspection parameters, such as heating energy, the acquisition time and frequency. In the data and image processing procedure, several important parameters which influence the results obtained are also described. For active IRT, there are different heating sources (optical or ultrasound), heating forms (pulsed or lock-in) and also data processing methods. Distinct heating and data processing manipulations produce different inspection results. In this research, both optical Pulsed Thermography (PT) and Lock-in Thermography (LT) techniques will be involved in the PoD analysis. For PT, PoD curves of different data processing methods are compared, including Fourier Transform (FT), 1st Derivative (1st D) after Thermal Signal Reconstruction (TSR), Wavelet Transform (WT), Differential Absolute Contrast (DAC), and Principal Component Thermography (PCT). Systematic studies on PoD analysis for IRT technique are carried out. Additionally, constructed PoD curves of IRT technique are compared with those obtained by other traditional NDT& E approaches.
20

Modélisation du contrôle par méthodes électromagnétiques de défauts réalistes de type fissuration / Efficient modeling of eddy-current testing signal in layered half-space affected by realistic cracks

Miorelli, Roberto 20 November 2012 (has links)
Le contrôle non destructif (CND) par Courants de Foucault (CF) de défauts de fissuration est l’une des techniques les plus répandues dans de nombreux secteurs industriels. L’utilisation d’outils de modélisation adaptés permet d’améliorer les procédés de contrôle et la compréhension des données expérimentales observées. Ce travail de thèse, réalisé au CEA LIST et sous la direction de D. Lesselier (Laboratoire des Signaux et Systèmes), a pour objectif de proposer une approche de modélisation semi-analytique dédiée à la simulation du CND CF de défauts fins ou très fins dans une pièce plane conductrice composée de plusieurs couches. Il a fait l’objet d’une collaboration, dans le cadre du projet CIVAMONT, avec l’équipe Meander de l’University of Western Macedonia (Grèce), dirigée par le professeur T. Theodoulidis.Du point de vue de la simulation, la complexité du problème à traiter est liée aux particularités des défauts de fissuration : une ouverture très fine, un profil complexe et la possibilité d’avoir des ponts de conductivité entre les deux faces latérales du défaut. Ces caractéristiques expliquent la difficulté qu’ont les méthodes de simulation classiques, semi-analytiques ou purement numériques, à traiter efficacement ce type de configuration. Pour ces raisons, une approche dédiée aux défauts fins, fondée sur la méthode des éléments de frontière, a été développée. Elle présente l’avantage majeur de ne requérir qu’une discrétisation surfacique du défaut, en traitant analytiquement le calcul dans la direction de son ouverture. Après la résolution, avec la Méthode des Moments, de l’équation intégrale décrivant les interactions entre le champ d’excitation et le défaut, la réponse de la sonde est calculée en appliquant le théorème de réciprocité. Les développements théoriques réalisés dans cette thèse ont abouti à la mise en place d’une formulation générale permettant la prise en compte d’un nombre quelconque de défauts fins, d’orientations et des géométries différentes, pouvant être situés dans des couches différentes de la pièce. Par la suite, cette méthode innovante a été implémentée au sein de la plateforme de simulation CIVA, développée au CEA LIST, et a été validée expérimentalement à plusieurs reprises. Une extension de cette méthode a également permis la mise en place d’une approche la couplant à une modélisation volumique standard pour la simulation de configurations complexes comme le contrôle de fissures au voisinage d’un alésage. Ce travail, qui a fait l’objet d’une diffusion internationale affirmée, a permis de lever avec succès un certain nombre de difficultés théoriques et pratiques liées à la modélisation du CND CF de défauts fins. / Non Destructive Testing (NDT) with Eddy Current (EC) techniques are is widely employed in several industrial sectors for cracks detection. Numerical simulation tools are largely used in order to design sensors, understand the signals collected during the measurements process and to provide a support in expertise. This work has been accomplished inside CEA LIST in collaboration with L2S-Supélec. It is also a part of the CIVAMONT 2012 project, with the active participation of MEANDER laboratory members from University of Western Macedonia (Greece) and Technological Educational Institute of Western Macedonia (Greece). The main goal of our work has consisted in to developing a semi-analytical modeling approach, devoted to Eddy Current Testing (ECT) of multiple narrow cracks in planar multilayered structures. From the numerical point of view, simulation of multiple narrow cracks problems is a difficult task for classical methods, like for example the Volume Integral Method (VIM) or the Finite Element Method (FEM). The main issues reside in geometrical characteristics of narrow crack themselves. Indeed, a narrow crack presents a small opening as well as complex profile and a complex shape, with possible electrical contacts inside it. All these features increase enormously, with classical methods, the difficulty to simulate in rapid and/or precise way problems involving narrow cracks. We have tackled the narrow crack issue by developing a Boundary Element Method (BEM) dedicated to ECT signal modeling, starting from an approach presented in literature. Then, we have extended its capability to more realistic and challenging cases, such as the ECT of multilayered structures affected by complex narrow cracks. The principle of this method is to introduce additional assumptions, leading to the description of the crack perturbation as the effect of a dipole distribution, oriented toward the crack opening. Numerically speaking, such a description makes it possible to largely reduce, compared to the VIM, the number of unknowns that one needs to properly solve the problem. A particular attention has been devoted to the analytical formulation, in order to achieve generality, accuracy and efficiency. A precise derivation of the spectral-domain Dyadic Green Function (DGF) associated to our problem has first been developed. In this work, analytical expressions of the spectral-domain DGF have been obtained via the Discrete Complex Image Method (DCIM). Then, an accurate approximation of the spectral-domain DGF has been achieved via the Generalized Pencil of Function (GPOF) method. Therefore, the closed-form of the spectral-domain DGF, expressed under the form of Sommerfeld Integrals (SIs), has been calculated analytically. Finally, the integral equation(s) associate to the electromagnetic problem is solved by applying the Method of Moments (MoM).Validations with respect to experiments and commercial simulation software have been performed to test the model. A large set of configurations have been chosen in order to address realistic configurations involving multiple narrow cracks embedded in different layers of a given multilayered structure. The model proposed has shown its promising performance in terms of computational time compared with the VIM and the FEM. Moreover, a very good agreement with respect to the experimental data has always been observed. In the last and very recent part of our work, a coupled approach between BEM and VIM has been studied and developed in order to address, in a efficient way, problems where narrow cracks appear in the vicinity of with volumetric flaws (for example the simulation of fastener sites inspections). Comparisons with experimental measures have shown that the coupled approach is capable to achieve, overall, better results than the VIM and saves a lot of computational time.

Page generated in 0.1261 seconds