• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magneto-Rheological Dampers for Super-sport Motorcycle Applications

Gravatt, John Wilie 19 June 2003 (has links)
In recent years, a flurry of interest has been shown for a relatively old technology called magneto-rheological fluids, or MR fluids. Multiple types of devices have been designed to implement this versatile fluid, including linear dampers, clutches, work-piece fixtures, and polishing machines. The devices have been used in automobiles, washing machines, bicycles, prosthetic limbs, and even smart structures. This thesis focuses on another application of MR dampers, involving super-sport motorcycles. This paper introduces the topics of MR dampers and motorcycle suspensions, and why the two would be a good combination. A detailed history of MR fluids, MR dampers, and motorcycle suspension technologies is given next. After a broad outline of MR dampers and motorcycle suspensions, the method of designing and manufacturing MR dampers is discussed. The damper design for this research is presented in detail, along with the design procedure used to make it. Next, laboratory testing for it is covered, including the test equipment, test procedure, and the laboratory test results. Upon laboratory test completion, the field test setup and procedure are presented. The results of field tests with stock dampers and MR dampers with a variety of control systems is discussed. The MR dampers provided a more stable ride than that of the OEM dampers. By reducing suspension displacement, settling time, and suspension oscillations, the MR dampers were able to reduce suspension geometry instability. Lastly, concluding remarks are made on the research presented. Design flaws are discussed, as well as recommendations for future work in the same area. / Master of Science

Page generated in 0.0935 seconds