Spelling suggestions: "subject:"controller board mon cover lungs roomy"" "subject:"controller board mon cover lungs moony""
1 |
Design of Controller board for a Lunar RoverRejas, Marcos January 2010 (has links)
<p>The Lunar Rover (Roony) is a robotic project group at Mälardalens University composed by students. The objective of this group is to design and build an autonomous robot that has to be able to move by itself through the moon terrain.</p><p>The Lunar Rover is divided in several sub-projects from different knowledge areas; the objective of this electronic thesis is to design a controller board.</p><p> </p><p>The designed board will be able to connect the robot to an external dispositive (via JTAG, or WIFI), and also it will control and connect the different robot’s peripherals.</p><p>The main component of the controller board is the microcontroller AT90CAN128.</p><p>The peripherals are a steeper motor, a LIDAR system (Light Detection And Ranging), a WIFI chip(WIPORT™), a bus can driver, an accelerometer, a LIPO( Lithium-Ion Polymer) battery charger, a Solar photovoltaic cell handler, and sixteen DC motors(four in each leg of the robot).</p><p>Once the logic design has finished, the PCB design is done attending the size limitations of the robot. Once the design has finished, a prototype has been built and tested using ATMEL software.</p>
|
2 |
Design of Controller board for a Lunar RoverRejas, Marcos January 2010 (has links)
The Lunar Rover (Roony) is a robotic project group at Mälardalens University composed by students. The objective of this group is to design and build an autonomous robot that has to be able to move by itself through the moon terrain. The Lunar Rover is divided in several sub-projects from different knowledge areas; the objective of this electronic thesis is to design a controller board. The designed board will be able to connect the robot to an external dispositive (via JTAG, or WIFI), and also it will control and connect the different robot’s peripherals. The main component of the controller board is the microcontroller AT90CAN128. The peripherals are a steeper motor, a LIDAR system (Light Detection And Ranging), a WIFI chip(WIPORT™), a bus can driver, an accelerometer, a LIPO( Lithium-Ion Polymer) battery charger, a Solar photovoltaic cell handler, and sixteen DC motors(four in each leg of the robot). Once the logic design has finished, the PCB design is done attending the size limitations of the robot. Once the design has finished, a prototype has been built and tested using ATMEL software.
|
Page generated in 0.1239 seconds