• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IMPROVING THE CONTROL AND SENSING RESILIENCY OF A DIESEL ENGINE USING MODEL-BASED METHODS

Shubham Ashok Konda (17551746) 05 December 2023 (has links)
<p dir="ltr">Resilient engine operation hugely depends on proper functioning of the engine’s sensors, enabling efficient feedback control of the engine systems operation. When the sensors on the engine measure a physical quantity incorrectly, it leads the engine control system to determine that the sensor measuring the physical quantity has failed. This failure may be attributed to a sensor stick failure, bias failure, drift failure, or failure occurring due to physical wear and tear of the sensor. Failure of crucial engine sensors may have adverse effects on engine operation, and in most cases leading into a limp home mode or a torque limitation mode. This affects the engine performance and efficiency. The engine under study in this work is a medium duty marine engine with diesel fuel. Sensor failures in the middle of a marine operation can hugely impact its mission. Therefore, fault tolerant control systems are essential to counter these challenges occurring due to sensor failures. In this thesis, an advanced nonlinear fault detection and state estimation algorithm is developed and implemented on a GT-Power engine model, employing a sophisticated co-simulation approach. The focus is on a 6.7L Cummins diesel engine, for which a detailed nonlinear state space model is constructed. This model accurately replicates critical engine parameters, such as pressures, temperatures, and engine speed, by integrating various submodels. These sub-models estimate key parameters like cylinder inlet charge flow, valve flow, cylinder outlet temperature, turbocharger turbine flow, and charge air cooler flow. To assess the model’s accuracy and reliability, it is rigorously validated against a truth reference GT-Power engine model. The results demonstrate exceptional performance, with the nonlinear model exhibiting a minimal percentage performance error of less than 5% under steady-state conditions and less than 15% during transient conditions. The core of the Fault Detection and State Estimation (FDSE) modules consists of a bank of Extended Kalman Filters (EKF). These filters are meticulously designed to estimate vital engine states, generate residuals, and assess these residuals even in the presence of process and measurement noise. This approach enables the detection of sensor faults and facilitates controller reconfiguration, ensuring the engine’s robustness in the face of unexpected sensor failures. Crucially, the nonlinear physics-based model serves as the foundation for the state transition functions utilized in the design of the observer bank. Residuals generated by the EKFs are evaluated using both fixed and adaptive thresholding techniques masking the sensor faults at the time step at which it is detected, ensuring robust performance not only in steady-state conditions but also during varying transient load conditions. To comprehensively evaluate the system’s resilience in practical scenarios, multiple sensor stuck failures are introduced into the GT-Power model. A software-in-the-loop co-simulation strategy is meticulously established, employing both the GT-Power truth reference engine model and the nonlinear Fault Detection and State Estimation (FDSE) model within the Simulink environment. This unique co-simulation approach provides a platform to assess the FDSE performance and its effect on engine performance in simulated sensor fault scenarios. The FDSE module is able to detect sensor failures which deviate at least 5% from their actual values. The percentage estimation error is less than 10% under steady state conditions and less than 20% under transient load conditions. Ultimately, this process creates analytical redundancy, not only forming the basis of state estimation but also empowering the engine to maintain its performance in the presence of sensor faults.</p>
2

Analyse de stabilité pour la reconfiguration de contrôleurs dans des véhicules autonomes / Stability analysis for controller switching in autonomous vehicles

Navas Matos, Francisco 28 November 2018 (has links)
Les avantages des véhicules autonomes sont formidables, mais le chemin vers une vraie autonomie sera long et semé d’incertitudes. La recherche de ces dernières années s’est basée sur des systèmes multi-capteurs capables de percevoir l’environnement dans lequel le véhicule est conduit. Ces systèmes deviennent plus complexes quand on contrôle le véhicule autonome, différents systèmes de contrôle sont activés dépendant de la décision du système multi-capteurs. Chacun de ces systèmes suit des critères de performance et de stabilité lors de leur conception. Cependant, ils doivent fonctionner ensemble, garantissant une stabilité et étant capable de se charger des changements dynamiques, structuraux et environnementaux. Cette thèse explore la paramétrisation Youla-Kucera (YK) dans des systèmes dynamiques comme les voitures, en insistant sur la stabilité quand la dynamique change, ou que le trafic impose une reconfiguration du contrôleur. Concentrons-nous sur l’obtention de résultats de simulation et expérimentaux en relation avec le "Cooperative Adaptive Cruise Control" (CACC), dans le but, non pas d’utiliser, ici, pour la première fois la paramétrisation YK dans le domaine des systèmes de transport intelligents (STI), mais d’améliorer l’état de l’art en CACC aussi. Des résultats de reconfiguration stable de contrôleurs sont donnés quand la communication avec le véhicule précédent n’est plus disponible, en cas de manœuvre d’entrées/sorties ou lorsqu’ils sont entourés de véhicules aux dynamiques différentes. Ceci démontrant l’adaptabilité, la stabilité et l’implémentation réelle de la paramétrisation YK comme structure générale de contrôle pour les véhicules autonomes. / Benefits of autonomous vehicles are genuinely exciting, but the route to true autonomy in transportation will likely be long and full of uncertainty. Research on the last years is on the development of multi-sensor systems able to perceive the environment in which the vehicle is driving in. These systems increase complexity when controlling an autonomous vehicle, as different control systems are activated depending on the multi-sensor decision system. Each of these systems follows performance and stability criteria for its design, but they all must work together, providing stability guarantees and being able to handle dynamics, structural and environmental changes. This thesis explores the Youla-Kucera (YK) parameterization in dynamics systems such as vehicles, with special emphasis on stability when some dynamics change or the traffic situation demands controller reconfiguration. Focus is in obtaining simulation and experimental results related to Cooperative Adaptive Cruise Control (CACC), with the aim not only of using for the very first time YK parameterization in the Intelligent Transportation Systems (ITS) domain, but improving CACC state-of-the art. Stable controller reconfiguration results are given when non-available communication link with the preceding vehicle, cut-in/out maneuvers or surrounding vehicles with different dynamics, proving adapability, stability and possible real implementation of the YK parameterization as general control framework for autonomous vehicles.

Page generated in 0.1521 seconds