• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de um modelo fuzzy para determinação do calor latente com aplicação em sistemas de irrigação

Souza, Orlando Tadeu Lima de [UNESP] 17 December 2004 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2004-12-17Bitstream added on 2014-06-13T19:41:55Z : No. of bitstreams: 1 souza_otl_dr_botfca.pdf: 588448 bytes, checksum: ceb8cccb4fa70246726a955c5b4c66a0 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Universidade Estadual Paulista (UNESP) / The determination of the necessary amount of water is one of the main parameters of an agriculture irrigation system. One of the efficient consequences of the measurements of the system is the increase of productivity, and therefore the profitable advantage of it. The satisfactory amount of water is therefore a very important condition for the growing accomplishment of the plant causing the production, with fewer costs. The aim of this work is the development of a mathematical model, based on the Fuzzy Theory, to determine the stream of latent heat, having as a result the calculation of the transpiration dissipated that defines the necessary amount of water for the cultivations of plants in protected environments; intending above all the balance of water usage and electricity in the agriculture activity. This model can be used in the implementation of a system that controls the outflowing of irrigations, determining the time and volume of water that is necessary for the furnishing of it. The required amount of water for the supplement of the system is the gathered through the determination of the stream of latent heat, for its highness is the equivalent to the volume of water transpired by the plant. The model adopts three variables to begin with, which are: the balance of solar radiation, stream of the soil heat and the air temperature, which are the amounts that are measured by the installed equipments in the planted area. Through this model is possible to determine the stream of latent heat (LE), having it as the variable of exit of the model. To have this model validated there were used data, that were obtained in the experiment that was done by the cultivation of Euruca Sativa L., in an incubator covered by polyethylene at the Department of Science, at Faculdade de Ciências Agrônomicas and the results were obtained trough simulations that were done in the Laboratory of this Institution...
2

Examining Traditional, Better & Beyond Budgeting In a Dynamic Era : A Case Study of Länsförsäkringar / Examination av Traditionell Budgetering, Bättre Budgetering och Budgetlös Styrning I En Föränderlig Epok : En Case Studie av Länsförsäkringar

Renfors, Hampus, Odh, Martin January 2018 (has links)
Within the research field of management controlling systems, a contrasting debate has evolved about budgeting. The market environment has become more dynamic where traditional budgeting, better budgeting and beyond budgeting have received significant observation to establish what alternative that is mostly suitable for the current market situation. With rapid changes in the market environment, a traditional budget can quickly become obsolete. To help ground research in practice, we examine how the budgeting process is characterized from a short-term operational and long-term strategic perspective in modern organizations. Furthermore, we shed light on what functions the budget and/or its other management controlling system(s) fulfills. As researchers and practitioners claim that traditional budgets are among others static, inflexible and time-consuming, we investigate to what extent these corresponds to the views of the CFOs and Bank Directors interviewed for this study. To fulfill our purpose, we conducted a multiple-case study. The data is obtained through a qualitative strategy with elements of a quantitative. Our empirical data is primarily collected through interviews. We complemented with a questionnaire where the interviewees provide their standpoints on the criticism against traditional budgeting. The analysis is carried out with a qualitative approach. The result from this thesis illuminates that traditional, better and beyond budgeting is present in the studied organizations. Nevertheless, the study concludes that the positive aspects of a traditional budget outweighs its downsides despite criticism and market environmental factors.
3

Desenvolvimento de um modelo fuzzy para determinação do calor latente com aplicação em sistemas de irrigação /

Souza, Orlando Tadeu Lima de. January 2004 (has links)
Orientador: José Ângelo Cagnon / Abstract: The determination of the necessary amount of water is one of the main parameters of an agriculture irrigation system. One of the efficient consequences of the measurements of the system is the increase of productivity, and therefore the profitable advantage of it. The satisfactory amount of water is therefore a very important condition for the growing accomplishment of the plant causing the production, with fewer costs. The aim of this work is the development of a mathematical model, based on the Fuzzy Theory, to determine the stream of latent heat, having as a result the calculation of the transpiration dissipated that defines the necessary amount of water for the cultivations of plants in protected environments; intending above all the balance of water usage and electricity in the agriculture activity. This model can be used in the implementation of a system that controls the outflowing of irrigations, determining the time and volume of water that is necessary for the furnishing of it. The required amount of water for the supplement of the system is the gathered through the determination of the stream of latent heat, for its highness is the equivalent to the volume of water transpired by the plant. The model adopts three variables to begin with, which are: the balance of solar radiation, stream of the soil heat and the air temperature, which are the amounts that are measured by the installed equipments in the planted area. Through this model is possible to determine the stream of latent heat (LE), having it as the variable of exit of the model. To have this model validated there were used data, that were obtained in the experiment that was done by the cultivation of Euruca Sativa L., in an incubator covered by polyethylene at the Department of Science, at Faculdade de Ciências Agrônomicas and the results were obtained trough simulations that were done in the Laboratory of this Institution... / Doutor
4

Uma proposta de controle neural adaptativo para a navegação de veículos autônomos / Autonomous vehicle navigation control: an adaptative neural networks proposal

Silva, Joelson Coelho da January 1999 (has links)
Os equipamentos robóticos foram inicialmente criados para atuarem em ambientes industriais fechados. Com o passar do tempo, melhorias foram conquistadas. Atualmente, não se limitam mais à realização de tarefas simples e repetitivas em locais especialmente preparados. Novos equipamentos, capazes de atuarem em ambientes abertos e de realizarem as mais diversas atividades, estão sendo desenvolvidos. Para tanto, é necessário que seus sistemas de controle realizem uma efetiva interação com o mundo onde estão inseridos. Fazem-se necessários, portanto, novos sistemas controladores com capacidade de uma contínua adaptação ao ambiente dinâmico onde operam. As redes neurais artificiais, devido a sua capacidade de tratamento de problemas não lineares – matematicamente difíceis de serem resolvidos, estão sendo empregadas no controle destes processos. O gerenciamento da trajetória de um veículo móvel em ambientes abertos ou fechados é um procedimento altamente não-linear, logo, a aplicação das redes neurais artificiais é bastante promissora. Apesar de sua grande versatilidade, as redes neurais artificiais têm sido utilizadas apenas como sistemas de mapeamento. A grande maioria delas necessita de uma fase de treinamento para que possam armazenar a diversidade de estados possíveis do sistema. Quando atuam, elas simplesmente mapeiam os seus valores de entrada (estado atual) nas soluções previamente armazenadas. Contudo, esta não é a melhor abordagem para os sistemas abertos, ou seja, para os processos cujas situações e possibilidades não podem ser totalmente enumeradas e que podem ser mutáveis no decorrer do tempo. Este trabalho apresenta uma metodologia de controle neural adaptativo para guiar um veículo móvel até o seu destino em ambientes contendo obstáculos fixos ou móveis. Diferentemente das abordagens tradicionais, não existe a necessidade de um treinamento prévio da rede. A rede neural artificial escolhida promove uma contínua adaptação do sistema enquanto atua. Neste processo, são utilizados sensores que fornecem subsídios para que a rede possa gerar, adaptativamente, soluções parciais que façam com que o veículo autônomo se aproxime cada vez mais do seu objetivo, até, finalmente, atingi-lo. / The robotic equipments were created initially to actuate in closed industrial environments. Improvements have been acquieved in this area. Nowadays, they are no longer limited to perform simple and repetitive tasks in controlled places. New equipments, capable of acting in open environments and doing the most several activities, are being developed. For so much, it is necessary that its control systems accomplish an effective interaction with the world where they are inserted. Therefore, new systems controllers with capacity of a continuous adaptation to the dynamic environments are essential. Artificial neural networks, due to their capacity of dealing wit non-linear problems – mathematically difficult to be solved – are being used to control these kind of processes. Guide a mobile vehicle through an open or controlled environments is a highly non-linear procedure; therefore, the use of an artificial neural nets is quite promising. In spite of its great versatility, they have just been used as mapping systems. Most of them need a training phase so that they can store the diversity of system’s possible states. When they actuate, they simply map their input values (current state) to the solutions previously stored. However, this is not the best approach for open systems, i.e. systems whose situations and possibilities cannot be totally enumerated and that can change in time. This work presents an adaptive neural control methodology to guide a mobile vehicle to its target in environments with fixed or mobile obstacles. Differently from the traditional approaches, the need of a previous training phase of the neural network doesn't exist. The chosen model of artificial neural net promotes a continuous adaptation of the system while it actuates. Sensors are used to provide informations to the net. This way it generates partial solutions that makes the autonomous vehicle gets closer of its goal, until, finally, reach it.
5

Uma proposta de controle neural adaptativo para a navegação de veículos autônomos / Autonomous vehicle navigation control: an adaptative neural networks proposal

Silva, Joelson Coelho da January 1999 (has links)
Os equipamentos robóticos foram inicialmente criados para atuarem em ambientes industriais fechados. Com o passar do tempo, melhorias foram conquistadas. Atualmente, não se limitam mais à realização de tarefas simples e repetitivas em locais especialmente preparados. Novos equipamentos, capazes de atuarem em ambientes abertos e de realizarem as mais diversas atividades, estão sendo desenvolvidos. Para tanto, é necessário que seus sistemas de controle realizem uma efetiva interação com o mundo onde estão inseridos. Fazem-se necessários, portanto, novos sistemas controladores com capacidade de uma contínua adaptação ao ambiente dinâmico onde operam. As redes neurais artificiais, devido a sua capacidade de tratamento de problemas não lineares – matematicamente difíceis de serem resolvidos, estão sendo empregadas no controle destes processos. O gerenciamento da trajetória de um veículo móvel em ambientes abertos ou fechados é um procedimento altamente não-linear, logo, a aplicação das redes neurais artificiais é bastante promissora. Apesar de sua grande versatilidade, as redes neurais artificiais têm sido utilizadas apenas como sistemas de mapeamento. A grande maioria delas necessita de uma fase de treinamento para que possam armazenar a diversidade de estados possíveis do sistema. Quando atuam, elas simplesmente mapeiam os seus valores de entrada (estado atual) nas soluções previamente armazenadas. Contudo, esta não é a melhor abordagem para os sistemas abertos, ou seja, para os processos cujas situações e possibilidades não podem ser totalmente enumeradas e que podem ser mutáveis no decorrer do tempo. Este trabalho apresenta uma metodologia de controle neural adaptativo para guiar um veículo móvel até o seu destino em ambientes contendo obstáculos fixos ou móveis. Diferentemente das abordagens tradicionais, não existe a necessidade de um treinamento prévio da rede. A rede neural artificial escolhida promove uma contínua adaptação do sistema enquanto atua. Neste processo, são utilizados sensores que fornecem subsídios para que a rede possa gerar, adaptativamente, soluções parciais que façam com que o veículo autônomo se aproxime cada vez mais do seu objetivo, até, finalmente, atingi-lo. / The robotic equipments were created initially to actuate in closed industrial environments. Improvements have been acquieved in this area. Nowadays, they are no longer limited to perform simple and repetitive tasks in controlled places. New equipments, capable of acting in open environments and doing the most several activities, are being developed. For so much, it is necessary that its control systems accomplish an effective interaction with the world where they are inserted. Therefore, new systems controllers with capacity of a continuous adaptation to the dynamic environments are essential. Artificial neural networks, due to their capacity of dealing wit non-linear problems – mathematically difficult to be solved – are being used to control these kind of processes. Guide a mobile vehicle through an open or controlled environments is a highly non-linear procedure; therefore, the use of an artificial neural nets is quite promising. In spite of its great versatility, they have just been used as mapping systems. Most of them need a training phase so that they can store the diversity of system’s possible states. When they actuate, they simply map their input values (current state) to the solutions previously stored. However, this is not the best approach for open systems, i.e. systems whose situations and possibilities cannot be totally enumerated and that can change in time. This work presents an adaptive neural control methodology to guide a mobile vehicle to its target in environments with fixed or mobile obstacles. Differently from the traditional approaches, the need of a previous training phase of the neural network doesn't exist. The chosen model of artificial neural net promotes a continuous adaptation of the system while it actuates. Sensors are used to provide informations to the net. This way it generates partial solutions that makes the autonomous vehicle gets closer of its goal, until, finally, reach it.
6

Uma proposta de controle neural adaptativo para a navegação de veículos autônomos / Autonomous vehicle navigation control: an adaptative neural networks proposal

Silva, Joelson Coelho da January 1999 (has links)
Os equipamentos robóticos foram inicialmente criados para atuarem em ambientes industriais fechados. Com o passar do tempo, melhorias foram conquistadas. Atualmente, não se limitam mais à realização de tarefas simples e repetitivas em locais especialmente preparados. Novos equipamentos, capazes de atuarem em ambientes abertos e de realizarem as mais diversas atividades, estão sendo desenvolvidos. Para tanto, é necessário que seus sistemas de controle realizem uma efetiva interação com o mundo onde estão inseridos. Fazem-se necessários, portanto, novos sistemas controladores com capacidade de uma contínua adaptação ao ambiente dinâmico onde operam. As redes neurais artificiais, devido a sua capacidade de tratamento de problemas não lineares – matematicamente difíceis de serem resolvidos, estão sendo empregadas no controle destes processos. O gerenciamento da trajetória de um veículo móvel em ambientes abertos ou fechados é um procedimento altamente não-linear, logo, a aplicação das redes neurais artificiais é bastante promissora. Apesar de sua grande versatilidade, as redes neurais artificiais têm sido utilizadas apenas como sistemas de mapeamento. A grande maioria delas necessita de uma fase de treinamento para que possam armazenar a diversidade de estados possíveis do sistema. Quando atuam, elas simplesmente mapeiam os seus valores de entrada (estado atual) nas soluções previamente armazenadas. Contudo, esta não é a melhor abordagem para os sistemas abertos, ou seja, para os processos cujas situações e possibilidades não podem ser totalmente enumeradas e que podem ser mutáveis no decorrer do tempo. Este trabalho apresenta uma metodologia de controle neural adaptativo para guiar um veículo móvel até o seu destino em ambientes contendo obstáculos fixos ou móveis. Diferentemente das abordagens tradicionais, não existe a necessidade de um treinamento prévio da rede. A rede neural artificial escolhida promove uma contínua adaptação do sistema enquanto atua. Neste processo, são utilizados sensores que fornecem subsídios para que a rede possa gerar, adaptativamente, soluções parciais que façam com que o veículo autônomo se aproxime cada vez mais do seu objetivo, até, finalmente, atingi-lo. / The robotic equipments were created initially to actuate in closed industrial environments. Improvements have been acquieved in this area. Nowadays, they are no longer limited to perform simple and repetitive tasks in controlled places. New equipments, capable of acting in open environments and doing the most several activities, are being developed. For so much, it is necessary that its control systems accomplish an effective interaction with the world where they are inserted. Therefore, new systems controllers with capacity of a continuous adaptation to the dynamic environments are essential. Artificial neural networks, due to their capacity of dealing wit non-linear problems – mathematically difficult to be solved – are being used to control these kind of processes. Guide a mobile vehicle through an open or controlled environments is a highly non-linear procedure; therefore, the use of an artificial neural nets is quite promising. In spite of its great versatility, they have just been used as mapping systems. Most of them need a training phase so that they can store the diversity of system’s possible states. When they actuate, they simply map their input values (current state) to the solutions previously stored. However, this is not the best approach for open systems, i.e. systems whose situations and possibilities cannot be totally enumerated and that can change in time. This work presents an adaptive neural control methodology to guide a mobile vehicle to its target in environments with fixed or mobile obstacles. Differently from the traditional approaches, the need of a previous training phase of the neural network doesn't exist. The chosen model of artificial neural net promotes a continuous adaptation of the system while it actuates. Sensors are used to provide informations to the net. This way it generates partial solutions that makes the autonomous vehicle gets closer of its goal, until, finally, reach it.

Page generated in 0.0775 seconds