• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modular forms and converse theorems for Dirichlet series

Karlsson, Jonas January 2009 (has links)
<p>This thesis makes a survey of converse theorems for Dirichlet series. A converse theo-rem gives sufficient conditions for a Dirichlet series to be the Dirichlet series attachedto a modular form. Such Dirichlet series have special properties, such as a functionalequation and an Euler product. Sometimes these properties characterize the modularform completely, i.e. they are sufficient to prove the proper transformation behaviourunder some discrete group. The problem dates back to Hecke and Weil, and has morerecently been treated by Conrey et.al. The articles surveyed are:</p><ul><li>"An extension of Hecke's converse theorem", by B. Conrey and D. Farmer</li><li>"Converse theorems assuming a partial Euler product", by D. Farmer and K.Wilson</li><li>"A converse theorem for ¡0(13)", by B. Conrey, D. Farmer, B. Odgers and N.Snaith</li></ul><p>The results and the proofs are described. The second article is found to contain anerror. Finally an alternative proof strategy is proposed.</p>
2

Modular forms and converse theorems for Dirichlet series

Karlsson, Jonas January 2009 (has links)
This thesis makes a survey of converse theorems for Dirichlet series. A converse theo-rem gives sufficient conditions for a Dirichlet series to be the Dirichlet series attachedto a modular form. Such Dirichlet series have special properties, such as a functionalequation and an Euler product. Sometimes these properties characterize the modularform completely, i.e. they are sufficient to prove the proper transformation behaviourunder some discrete group. The problem dates back to Hecke and Weil, and has morerecently been treated by Conrey et.al. The articles surveyed are: "An extension of Hecke's converse theorem", by B. Conrey and D. Farmer "Converse theorems assuming a partial Euler product", by D. Farmer and K.Wilson "A converse theorem for ¡0(13)", by B. Conrey, D. Farmer, B. Odgers and N.Snaith The results and the proofs are described. The second article is found to contain anerror. Finally an alternative proof strategy is proposed.

Page generated in 0.0746 seconds