Spelling suggestions: "subject:"convexity P3""
1 |
Algoritmos e limites para os números envoltório e de Carathéodory na convexidade P3 / Algorithms and limits for hull and Carathéodory numbers in P3 convexitySilva, Braully Rocha da 24 September 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-30T11:09:54Z
No. of bitstreams: 2
Dissertação - Braully Rocha da Silva - 2018.pdf: 1396149 bytes, checksum: 9a9145cb07e037a784d2d15d43cbd1ff (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-10-30T11:20:36Z (GMT) No. of bitstreams: 2
Dissertação - Braully Rocha da Silva - 2018.pdf: 1396149 bytes, checksum: 9a9145cb07e037a784d2d15d43cbd1ff (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-10-30T11:20:36Z (GMT). No. of bitstreams: 2
Dissertação - Braully Rocha da Silva - 2018.pdf: 1396149 bytes, checksum: 9a9145cb07e037a784d2d15d43cbd1ff (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-09-24 / Outro / In this work we present results and implementantions for hull and Carathéodory numbers in P3 convexity. We obtain results for graphs of diameter 2 having cut-vertex for both problems. Finally, entering more complex cases, we were able to determine a logarithmic limit, means of algorithm, for the hull number in case of graph diameter 2 and 2-connected. Exploring more restrictive cases, we determined a constant limit for some subclasses of graphs of diameter 2. We made also implementations and algorithms for these parameters. Implementations algorithms heuristic, parallel, and brute force. Finally, although not directly related, we developed an algorithm for Moore's graphs generation, which may be one of the ways to find Moore missinge graph, if it exists, a question that remains unknown for 55 years. And finally, we conclude with some conjectures interesting, for limits to the hull and Carathéodory numbers, in other classes of graphs, that were not explored in this work, but was identified by the implementations, and can be better explored in future works. / Nesta dissertação, tratamos de limites para o número envoltório e o número de Carathéodory na Convexidade P3. Aferimos resultados para grafos de diâmetro 2 com vértice de corte para ambos os problemas. Adentrando em casos mais complexos, conseguimos determinar um limite logarítmico, por meio de algoritmo pseudo-polimonial, para o número envoltório de grafos de diâmetro 2 biconexos. Explorando um pouco mais restritivamente, conseguimos determinar um limite constante para algumas subclasses de grafos de diâmetro 2, os grafos maximais sem triângulo. Não atendo somente aos resultados teóricos, realizamos também implementações e algoritmos para esses parâmetros. As implementações perfazem algoritmos heurísticos, paralelos e força bruta. Por fim, embora não diretamente relacionado, desenvolvemos uma algoritmo para geração de grafos de Moore, que pode ser um dos caminhos para encontrar o ultimo grafo de Moore, caso ele exista. Questão que remanesce desconhecido e procurada por 55 anos.
|
2 |
O número envoltório P3 e o número envoltório geodético em produtos de grafos / The P3-hull number and the geodetic hull number in graph productsNascimento, Julliano Rosa 30 November 2016 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2016-12-09T16:43:52Z
No. of bitstreams: 2
Dissertação - Julliano Rosa Nascimento - 2016.pdf: 1812313 bytes, checksum: 9bdaa6ddbbe1dd9ce1e9ccdea8016eaf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-12-13T19:11:50Z (GMT) No. of bitstreams: 2
Dissertação - Julliano Rosa Nascimento - 2016.pdf: 1812313 bytes, checksum: 9bdaa6ddbbe1dd9ce1e9ccdea8016eaf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-12-13T19:11:50Z (GMT). No. of bitstreams: 2
Dissertação - Julliano Rosa Nascimento - 2016.pdf: 1812313 bytes, checksum: 9bdaa6ddbbe1dd9ce1e9ccdea8016eaf (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-11-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we consider the parameter hull number in two graph convexities, the P3-
convexity and the geodetic convexity. In the P3-convexity, we present results on the P3-
hull number on the Cartesian product, strong product and lexicographic product of graphs.
In special, regarding to the Cartesian product, we proved a complexity result, in which we
show, given a graph G resulting of a Cartesian product of two graphs and a positive integer
k, is NP-complete to decide whether the P3-hull number of G is less than or equal k. We
also consider the P3-hull number on complementary prisms GG of connected graphs G
and G, in which we show a tighter upper bound than that found in the literature. In the
geodetic convexity, we show results of the hull number on complementary prisms GG
when G is a tree, when G is a disconnected graph and when G is a cograph. Finally, we
also show that in the geodetic convexity, the hull number on the complementary prism
GG is unlimited on connected graphs G and G, unlike what happens in the P3-convexity / Nesta dissertação, consideramos o parâmetro número envoltório em duas convexidades
em grafos, a convexidade P3 e a convexidade geodética. Na convexidade P3, obtivemos
resultados do número envoltório P3 para o produto Cartesiano, produto forte e produto
lexicográfico de grafos. Em especial, em relação ao produto Cartesiano, obtivemos um
resultado de complexidade, no qual mostramos que, dado um grafo G, resultante de um
produto Cartesiano de dois grafos e um inteiro positivo k, é NP-completo decidir se
o número envoltório P3 de G é menor ou igual a k. Também consideramos o número
envoltório P3 para prismas complementares GG de grafos G e G conexos, em que
mostramos um limite superior um pouco mais justo do que o encontrado na literatura.
Na convexidade geodética, mostramos resultados do número envoltório para prismas
complementares GG quando G é uma árvore, quando G é um grafo desconexo e quando
G é um cografo. Por fim, também mostramos que na convexidade geodética o número
envoltório do prisma complementar GG pode ser ilimitado para grafos G e G ambos
conexos, diferentemente do que ocorre na convexidade P3.
|
Page generated in 0.0527 seconds