Spelling suggestions: "subject:"convexity generalizada""
1 |
Condições suficientes de otimalidade em cálculo variacionalRojas Jara, Rocío del Pilar [UNESP] 20 December 2013 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:24:10Z (GMT). No. of bitstreams: 0
Previous issue date: 2013-12-20. Added 1 bitstream(s) on 2015-09-17T15:48:16Z : No. of bitstreams: 1
000846652.pdf: 1343997 bytes, checksum: 1000b508cfe00cf80877428e4f647e0e (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho consideramos dois problemas variacionais com restrições Lagrangeanas do tipo g(t, x(t), x_ (t)) = 0. Apresentamos vários resultados sobre condições su cientes de otimalidade Kuhn-Tucker supondo invexidade generalizada das funções envolvidas. Introduzimos duas de nições para os problemas variacionais estudados, a primeira chamada de L-KT-pseudo-invexidade, que envolve os multiplicadores Lagrangeanos, e a segunda chamada de KT-pseudo-invexidade, que não envolve os multiplicadores Lagrangeanos. Apresentamos uma caracterização dos problemas variacionais L-KT-pseudo-invexos como sendo aqueles problemas onde todos seus pontos Kuhn-Tucker são soluções ótimas. Finalmente mostramos que, sob algumas condições, L-KT-pseudo-invexidade é equivalente a KT-pseudo-invexidade / In this work we consider two variational problems with Lagrangian constraints of type g(t, x(t), x_ (t)) = 0. We present several results on su cient conditions for Kuhn-Tucker optimality assuming generalized invexity of the functions involved. We introduce two de nitions for the variational problems, the rst called L-KT-pseudo-invexity, which involves the Lagrangian multipliers and the second called KT-pseudo-invexity, which does not involve the Lagrangian multipliers. We present a characterization of L-KTpseudo- invex variational problems as those problems where all Kuhn-Tucker points are optimal solutions. Finally we show that, under some conditions, L-KT-pseudo-invexity is equivalent to KT-pseudo-invexity
|
2 |
Condições de otimalidade em cálculo das variações no contexto não-suave / Optimality conditions in calculus of variations in the non-smooth contextSignorini, Caroline de Arruda [UNESP] 07 March 2017 (has links)
Submitted by CAROLINE DE ARRUDA SIGNORINI null (carolineasignorini@gmail.com) on 2017-03-22T17:30:47Z
No. of bitstreams: 1
Dissertação - versão definitiva [22.03.2017].pdf: 1265324 bytes, checksum: cb95983dd59698aa1bb765a4dd7f9866 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-23T13:46:47Z (GMT) No. of bitstreams: 1
signorini_ca_me_sjrp.pdf: 1265324 bytes, checksum: cb95983dd59698aa1bb765a4dd7f9866 (MD5) / Made available in DSpace on 2017-03-23T13:46:47Z (GMT). No. of bitstreams: 1
signorini_ca_me_sjrp.pdf: 1265324 bytes, checksum: cb95983dd59698aa1bb765a4dd7f9866 (MD5)
Previous issue date: 2017-03-07 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nosso principal propósito neste trabalho é o estudo de condições necessárias e suficientes de otimalidade para problemas de Cálculo das Variações no contexto não-suave. Este estudo partirá da formulação básica suave, passando por problemas com restrições Lagrangianas, até o caso em que consideramos Lagrangianas não-suaves e soluções absolutamente contínuas. Neste caminho, abordaremos um importante avanço na teoria de Cálculo das Variações: os resultados de existência e regularidade de soluções. Além das condições necessárias, analisaremos as condições suficientes através de um conceito de convexidade generalizada, o qual denominamos E-pseudoinvexidade. / Our main purpose in this work is the study of necessary and sufficient optimality conditions for Calculus of Variations problems in the nonsmooth context. This study will comprehend the smooth basic formulation, constrained problems (with Lagrangian restrictions), non-smooth Lagrangians and absolutely continuous solutions. Moreover, we will approach an important advance in Calculus of Variations theory: the existence and regularity of solutions. In addition to necessary conditions, we will analyze sufficient conditions through a generalized convexity concept, which we called E-pseudoinvexity. / FAPESP: 2014/24271-6
|
Page generated in 0.1055 seconds