• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Solid Propellant Ignition Events

Smyth, Daniel A. 13 December 2011 (has links) (PDF)
This dissertation documents the building of computational propellant/ingredient models toward predicting AP/HTPB/Al cookoff events. Two computer codes were used to complete this work; a steady-state code and a transient ignition code Numerous levels of verification resulted in a robust set of codes to which several propellant/ingredient models were applied. To validate the final cookoff predictions, several levels of validation were completed, including the comparison of model predictions to experimental data for: AP steady-state combustion, fine-AP/HTPB steady-state combustion, AP laser ignition, fine-AP/HTPB laser ignition, AP/HTPB/Al ignition, and AP/HTPB/Al cookoff. A previous AP steady-state model was updated, and then a new AP steady-state model was developed, to predict steady-state combustion. Burning rate, temperature sensitivity, surface temperature, melt-layer thickness, surface species at low pressure and high initial temperature, final flame temperature, final species fractions, and laser-augmented burning rate were all predicted accurately by the new model. AP ignition predictions gave accurate times to ignition for the limited experimental data available. A previous fine-AP/HTPB steady-state model was improved to predict a melt layer consistent with observation and avoid numerical divergence in the ignition code. The current fine-AP/HTPB model predicts burning rate, surface temperature, final flame temperature, and final species fractions for several different propellant formulations with decent success. Results indicate that the modeled condensed-phase decomposition should be exothermic, instead of endothermic, as currently formulated. Changing the model in this way would allow for accurate predictions of temperature sensitivity, laser-augmented burning rate, and surface temperature trends. AP/HTPB ignition predictions bounded the data across a wide range of heat fluxes. The AP/HTPB/Al model was based upon the kinetics of the AP/HTPB model, with the inclusion of aluminum being inert in both the solid and gas phases. AP/HTPB/Al ignition predictions bound the data for all but one source. AP/HTPB/Al cookoff predictions were accurate when compared to the limited data, being slightly low (shorter time) in general. Comparisons of AP/HTPB/Al ignition and cookoff data showed that the experimental data might be igniting earlier than expected.

Page generated in 0.0323 seconds