• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 9
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 14
  • 14
  • 14
  • 11
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear and geometrically nonlinear analysis of shell structures by a shear flexible finite element shell formulation

Lam, Siu-Shu Eddie January 1988 (has links)
No description available.
2

Design, Assembly, and Assessment of an Experimental Apparatus to Measure Fouling of Condenser Tubes

Zdaniuk, Gregory J 13 December 2003 (has links)
This thesis discusses the design, construction, and debugging of an experimental apparatus to measure fouling in smooth and/or augmented copper alloy condenser tubes. In addition, guidelines and recommendations are made for construction of similar devices. Specification sheets of the system components, detailed design calculations, and photographs of the apparatus are included in the appendices.
3

Thermodynamic modeling and optimization of a screw compressor chiller and cooling tower system

Graves, Rhett David 30 September 2004 (has links)
This thesis presents a thermodynamic model for a screw chiller and cooling tower system for the purpose of developing an optimized control algorithm for the chiller plant. The thermodynamic chiller model is drawn from the thermodynamic models developed by Gordon and Ng (1996). However, the entropy production in the compressor is empirically related to the pressure difference measured across the compressor. The thermodynamic cooling tower model is the Baker & Shryock cooling tower model that is presented in ASHRAE Handbook - HVAC Systems and Equipment (1992). The models are coupled to form a chiller plant model which can be used to determine the optimal performance. Two correlations are then required to optimize the system: a wet-bulb/setpoint correlation and a fan speed/pump speed correlation. Using these correlations, a "quasi-optimal" operation can be achieved which will save 17% of the energy consumed by the chiller plant.
4

The Noise Barrier of Cooling Tower-The Application of Aluminum Porous Board

Cheng, Hao-An 16 July 2001 (has links)
This thesis uses aluminum porous board (AP board) to study the noise reduction for cooling tower. It sets the barrier to isolate the sound propagation. But it will happen diffracted phenomenon when sound wave impinging at the edge of barrier. So the mathematical model of acoustic diffraction on the barriers, which is set up by Hayek, is applied in this thesis. Base on this theorem, the AP board and the paths of sound propagation are analyzed. In experiment, it uses the sound intensity method to measure the cooling tower for determining the major source first. The major source is determined by ranking the sound power. And the suitable insulation material is selected by analysis the frequency band of major source. After analyzing, the major source of cooling tower is the region of fans by motor driven that is located upper the cooling tower. And its frequency range is between 25 Hz to 2500 Hz. So the AP board is a candidate since it has broadband characteristic on noise insulation. After aim of the major source, the noise barrier is studied for noise reduction. In this thesis, the U profile of barrier (looking down from above), which considers the situation in the field, is designed to surround the cooling tower. This barrier is made of aluminum board, and the aluminum porous board is applied to add on the upper barrier for noise reduction. To study the acoustic diffraction on the boundary of barrier, the thick of porous board is added on the upper barrier. The insulation effect is compared in the different condition after measuring the transmission loss. The T shape barrier is also designed for noise reduction evaluating in this thesis. Finally, the best-insulated effect is obtained when the complex board is added on the upper barrier. And the noise level is down to 59 dB around the environment. This result is matched the EPA noise standards.
5

Thermodynamic modeling and optimization of a screw compressor chiller and cooling tower system

Graves, Rhett David 30 September 2004 (has links)
This thesis presents a thermodynamic model for a screw chiller and cooling tower system for the purpose of developing an optimized control algorithm for the chiller plant. The thermodynamic chiller model is drawn from the thermodynamic models developed by Gordon and Ng (1996). However, the entropy production in the compressor is empirically related to the pressure difference measured across the compressor. The thermodynamic cooling tower model is the Baker & Shryock cooling tower model that is presented in ASHRAE Handbook - HVAC Systems and Equipment (1992). The models are coupled to form a chiller plant model which can be used to determine the optimal performance. Two correlations are then required to optimize the system: a wet-bulb/setpoint correlation and a fan speed/pump speed correlation. Using these correlations, a "quasi-optimal" operation can be achieved which will save 17% of the energy consumed by the chiller plant.
6

Biofouling control of industrial seawater cooling towers

Al-Bloushi, Mohammed 11 1900 (has links)
The use of seawater in cooling towers for industrial applications has much merit in the Gulf Cooperation Council countries due to the scarcity and availability of fresh water. Seawater make-up in cooling towers is deemed the most feasible because of its unlimited supply in coastal areas. Such latent-heat removal with seawater in cooling towers is several folds more efficient than sensible heat extraction via heat exchangers. Operational challenges such as scaling, corrosion, and biofouling are a major challenge in conventional cooling towers, where the latter is also a major issue in seawater cooling towers. Biofouling can significantly hamper the efficiency of cooling towers. The most popular methods used in cooling treatment to control biofouling are disinfection by chlorination. However, the disadvantages of chlorination are formation of harmful disinfection byproducts in the presence of high organic loading and safety concerns in the storage of chlorine gas. In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities. Test results of GAC bio-filter showed that around 70 % removal of total organic carbon in the seawater feed was achieved and was effective in keeping the microbial growth to a minimum. The measured results from this study enable designers of seawater cooling towers to manage the biofouling problems when such cooling towers are extrapolated to a pilot scale.
7

Influência de variáveis de processo do desempenho de torre de resfriamento. / Influence of process variables on the cooling tower performance.

Mello, Lilian Cardoso de 29 August 2008 (has links)
Com base em um modelo fenomenológico e a partir de dados experimentais obtidos numa planta piloto, foi obtida uma correlação entre o desempenho de uma torre de resfriamento em função das principais variáveis de processo: fluxos mássicos do gás e da água pela torre, e temperatura de entrada da água. Os resultados apresentaram boa consistência, comparados com os da literatura. A metodologia desenvolvida pode, com relativa facilidade, ser aplicada para torres de resfriamento industriais, pois se baseia em medidas de variáveis, factíveis em termos práticos. Efetuou-se também um estudo paralelo com base em modelagem e simulações matemáticas do comportamento de uma torre de resfriamento de água em condições severas, com temperatura da água de alimentação superior a 50°C. Constatou-se que o coeficiente de transporte de massa na torre de resfriamento aparentemente não é afetado. / Cooling towers are widely used in many industrial and utility plants and its thermal performance is of vital importance. In the present work, using a phenomenological model and by experiments carried on over a pilot installation, the mass transfer coefficient dependence of air and water flow rates and inlet cooling water temperature is determined. The approach proposed may be useful in addition for characterization of industrial cooling towers since it depends on temperature and flow rate measurement usually available in typical plants. A parallel study concerning high mass transfer rate theory is accomplished. Through mathematical modeling and simulations based on this study no influence is detected on the mass transfer coefficient in the cooling tower, operating under harsh conditions with inlet water temperature up to 90°C.
8

Influência de variáveis de processo do desempenho de torre de resfriamento. / Influence of process variables on the cooling tower performance.

Lilian Cardoso de Mello 29 August 2008 (has links)
Com base em um modelo fenomenológico e a partir de dados experimentais obtidos numa planta piloto, foi obtida uma correlação entre o desempenho de uma torre de resfriamento em função das principais variáveis de processo: fluxos mássicos do gás e da água pela torre, e temperatura de entrada da água. Os resultados apresentaram boa consistência, comparados com os da literatura. A metodologia desenvolvida pode, com relativa facilidade, ser aplicada para torres de resfriamento industriais, pois se baseia em medidas de variáveis, factíveis em termos práticos. Efetuou-se também um estudo paralelo com base em modelagem e simulações matemáticas do comportamento de uma torre de resfriamento de água em condições severas, com temperatura da água de alimentação superior a 50°C. Constatou-se que o coeficiente de transporte de massa na torre de resfriamento aparentemente não é afetado. / Cooling towers are widely used in many industrial and utility plants and its thermal performance is of vital importance. In the present work, using a phenomenological model and by experiments carried on over a pilot installation, the mass transfer coefficient dependence of air and water flow rates and inlet cooling water temperature is determined. The approach proposed may be useful in addition for characterization of industrial cooling towers since it depends on temperature and flow rate measurement usually available in typical plants. A parallel study concerning high mass transfer rate theory is accomplished. Through mathematical modeling and simulations based on this study no influence is detected on the mass transfer coefficient in the cooling tower, operating under harsh conditions with inlet water temperature up to 90°C.
9

Legionella i kyltorn : Enkätundersökning gällande kommuners och länsstyrelsers tillsyn på kyltorn och behovet av ökad prioritering

Eriksson, Rebecca January 2018 (has links)
If cooling towers are poorly maintained there is a risk of microbial growth such as Legionella which in turn might spread via aerosols and infect humans. This may lead to an outbreak of legionnaires’ disease. The purpose of this study was to highlight the risks of Legionella and cooling towers along with investigating the legal responsibility of businesses and supervision authorities in this regard. The study also investigated whether business should be obligated to register their cooling towers at supervising authorities. The study was partly based on a survey which was sent to Sweden’s 290 municipalities and 21 county administration boards to investigate their knowledge regarding Legionella and cooling towers and if they had inventoried which of their facilities that uses cooling towers. The results of the survey showed that 16% of the municipalities and none of the county administration board had inventoried which of their facilities that uses cooling towers. Half of the municipalities do not have any knowledge if any of their facilities uses cooling towers. Moreover, 45% of the municipalities and 30% of the county administration boards consider that business should register their cooling towers. The results showed that many of Sweden’s municipalities and county administration boards have shortcomings in their knowledge and supervision. Legislation and priorities need to be assessed and regulatory guidance from the Public Health Agency of Sweden is necessary for future progress.
10

Methodology for cooling water systems design = Metodologia para projeto de sistemas de água de resfriamento / Metodologia para projeto de sistemas de água de resfriamento

Silva, Igor Maciel de Oliveira e, 1990- 25 August 2018 (has links)
Orientador: Roger Josef Zemp / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-25T15:18:44Z (GMT). No. of bitstreams: 1 Silva_IgorMacieldeOliveirae_M.pdf: 2922871 bytes, checksum: 4b7ffbcbf31e3be71d4453d00d6c7592 (MD5) Previous issue date: 2014 / Resumo: Sistemas de água de resfriamento são o método mais comum de rejeição de calor na indústria. Sistemas convencionais de água de resfriamento recirculante possuem uma rede de trocadores de calor em uma configuração paralela, demandando grande quantidade de circulação de água e torres de resfriamento. Embora a reutilização de água de resfriamento reduza a quantidade de água que é necessária no sistema e aumente o desempenho e capacidade da torre de resfriamento, a queda de pressão na rede de trocadores de calor pode aumentar devido ao seu arranjo em série-paralelo. Este estudo introduz uma metodologia para projetar diferentes sistemas de água de resfriamento e para analisar os impactos da reutilização de água sobre a queda de pressão na rede de trocadores de calor e sobre a torre de resfriamento. A partir de um modelo de super-estrutura, utiliza-se um algoritmo combinatorial com o auxílio da ferramenta de otimização Solver do Microsoft Excel para resolver um problema não-linear (NLP) de cada estrutura de rede de trocadores de calor. A queda de pressão em redes de trocadores de calor é avaliada por uma metodologia baseada na Teoria dos Grafos e utiliza os algoritmos de ordenação por topologia e de caminho crítico. Utiliza-se o método de Merkel para modelar a altura de uma torre de resfriamento e poder avaliar o volume necessário de uma torre de resfriamento para cada rede de trocadores de calor. Um estudo de caso é utilizado para ilustrar cada passo a medida que a metodologia é desenvolvida, buscando prover fundamentos para um estágio conceitual durante o projeto de um sistema de água de resfriamento / Abstract: Cooling water systems are the most common method of waste heat disposal in industry. Conventional recirculating cooling water systems have a heat exchanger network in a parallel arrangement, demanding not only substantial cooling water flow, but also large cooling towers. Although cooling water reuse reduces the amount of water that is recirculated in the system, thereby increasing the cooling tower capacity and performance, the pressure drop in the heat exchanger network may significantly increase due to series-parallel arrangements. This study introduces a methodology to design different cooling water systems and to analyse the cooling water reuse impacts on the heat exchanger network pressure drop and on the cooling tower size. From a superstructure model, a combinatorial algorithm in conjunction with the optimisation tool Solver in Microsoft Excel is used to solve a non-linear problem for each heat exchanger network structure. Pressure drop in heat exchanger networks is evaluated by a methodology that is based on Graph Theory and that uses topological sorting and critical path algorithms. Merkel's method is used to model the cooling tower height and to assess the required cooling tower volume for each heat exchanger network. A case study is used to illustrate each step as the methodology is developed, aiming to provide a basis for a conceptual stage during the cooling water system design / Mestrado / Engenharia Química / Mestre em Engenharia Química

Page generated in 0.0615 seconds