• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem em análise de sobrevivência para dados médicos bivariados utilizando funções cópulas e fração de cura / Modeling in survival analysis for medical data using bivariate copula functions and cure fraction.

Barros, Emilio Augusto Coelho 31 July 2014 (has links)
Modelos de mistura e de não mistura em longa duracão, são aplicados na analise de dados de sobrevivência quando uma parcela de indivduos não são suscetíveis ao evento de interesse. Diferentes modelos estatsticos são propostos para analisar dados de sobrevivência na presenca de fracão de cura. Nesta tese, e proposto o uso de novos modelos. Sob o ponto de vista univariado, inicialmente e considerado o caso em que os dados de sobrevivênciaa seguem distribuicão Burr XII com três parâmetros, no qual inclui o modelo de mistura para a distribuicão Weibull como caso particular. Um modelo de sobrevivência geral e estudado considerando a situacão em que os parâmtreos de locacão e forma dessa distribuicão dependem de covariaveis. Ainda considerando o caso univariado, um estudo da distribuicãoo exponencial exponenciada com dois parâmetros e realizado. Essa distribuicão, tambem conhecida como distribuicão exponencial generalizada, e um caso particular da distribuicão Weibull exponenciada, introduzida por Mudholkar e Srivastava (1993). Um modelo de sobrevivência geral tambem e estudado, nesse caso considera-se a situacão em que os parâmetros de escala, forma e de fracão de cura da distribuicão exponencial exponenciada dependem de covariaveis. Um terceiro estudo univariado considera a distribuicão Weibull na presenca de fracão de cura, dados censurados e covariaveis. Nesse caso, dois modelos são estudados: modelo de mistura e modelo de não mistura. Quando dois tempos de sobrevivência distintos estão associados a cada unidade amostral (caso bivariado), na analise dos dados e possvel utilizar algumas distribuicões bivariadas: em especial a distribuicão exponencial bivariada de Block e Basu. As estimativas dos parâmetros da distribuicão exponencial bivariada de Block e Basu na presenca de fracão de cura e covariaveis são obtidas. Sob o ponto de vista bivariado tambem sera considerado o caso da distribuicão Weibull bivariada derivada de função copula na presenca de fração ao de cura, dados censurados e covariaveis. Duas funcões copulas são exploradas: a funcão copula Farlie-Gumbel-Morgenstern (FGM) e a funcão copula Gumbel. Procedimentos classicos e Bayesianos são utilizados para obter estimadores pontuais e intervalares dos parâmetros desconhecidos. Para vericar a utilidade e o comportamento dos modelos, alguns conjuntos de dados na area medica são analisados. / Mixture and non-mixture lifetime models are applied to analyze survival data when some individuals may never experience the event of interest. Dierent statistical models are proposed to analyze survival data in the presence of cure fraction. In this thesis, we propose the use of new models. From the univariate case, we consider that the lifetime data have a three-parameter Burr XII distribution, which includes the popular Weibull mixture model as a special case. We consider a general survival model where the scale and shape parameters of the Burr XII distribution depends on covariates. Also considering the univariate case the two-parameters exponentiated exponential distribution is used. The two-parameter exponentiated exponential or the generalized exponential distribution is a particular member of the exponentiated Weibull distribution introduced by Mudholkar and Srivastava (1993). We also consider in this case a general survival model where the scale, shape and cured fraction parameters of the exponentiated exponential distribution depends on covariates. We also introduce the univariate Weibull distributions in presence of cure fraction, censored data and covariates. Two models are explored in this case: the mixture model and non-mixture model. When we have two lifetimes associated with each unit (bivariate data), we can use some bivariate distributions: as special case the Block and Basu bivariate lifetime distribution. We also presents estimates for the parameters included in Block and Basu bivariate lifetime distribution in presence of covariates and cure fraction, applied to analyze survival data when some individuals may never experience the event of interest and two lifetimes are associated with each unit. We also consider in bivariate case the bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copula functions are explored in this paper: the Farlie-Gumbel-Morgenstern copula (FGM) and the Gumbel copula. Classical and Bayesian procedures are used to get point and condence intervals of the unknown parameters. Illustrations of the proposed methodologies are given considering medicals data sets.
2

Modelagem em análise de sobrevivência para dados médicos bivariados utilizando funções cópulas e fração de cura / Modeling in survival analysis for medical data using bivariate copula functions and cure fraction.

Emilio Augusto Coelho Barros 31 July 2014 (has links)
Modelos de mistura e de não mistura em longa duracão, são aplicados na analise de dados de sobrevivência quando uma parcela de indivduos não são suscetíveis ao evento de interesse. Diferentes modelos estatsticos são propostos para analisar dados de sobrevivência na presenca de fracão de cura. Nesta tese, e proposto o uso de novos modelos. Sob o ponto de vista univariado, inicialmente e considerado o caso em que os dados de sobrevivênciaa seguem distribuicão Burr XII com três parâmetros, no qual inclui o modelo de mistura para a distribuicão Weibull como caso particular. Um modelo de sobrevivência geral e estudado considerando a situacão em que os parâmtreos de locacão e forma dessa distribuicão dependem de covariaveis. Ainda considerando o caso univariado, um estudo da distribuicãoo exponencial exponenciada com dois parâmetros e realizado. Essa distribuicão, tambem conhecida como distribuicão exponencial generalizada, e um caso particular da distribuicão Weibull exponenciada, introduzida por Mudholkar e Srivastava (1993). Um modelo de sobrevivência geral tambem e estudado, nesse caso considera-se a situacão em que os parâmetros de escala, forma e de fracão de cura da distribuicão exponencial exponenciada dependem de covariaveis. Um terceiro estudo univariado considera a distribuicão Weibull na presenca de fracão de cura, dados censurados e covariaveis. Nesse caso, dois modelos são estudados: modelo de mistura e modelo de não mistura. Quando dois tempos de sobrevivência distintos estão associados a cada unidade amostral (caso bivariado), na analise dos dados e possvel utilizar algumas distribuicões bivariadas: em especial a distribuicão exponencial bivariada de Block e Basu. As estimativas dos parâmetros da distribuicão exponencial bivariada de Block e Basu na presenca de fracão de cura e covariaveis são obtidas. Sob o ponto de vista bivariado tambem sera considerado o caso da distribuicão Weibull bivariada derivada de função copula na presenca de fração ao de cura, dados censurados e covariaveis. Duas funcões copulas são exploradas: a funcão copula Farlie-Gumbel-Morgenstern (FGM) e a funcão copula Gumbel. Procedimentos classicos e Bayesianos são utilizados para obter estimadores pontuais e intervalares dos parâmetros desconhecidos. Para vericar a utilidade e o comportamento dos modelos, alguns conjuntos de dados na area medica são analisados. / Mixture and non-mixture lifetime models are applied to analyze survival data when some individuals may never experience the event of interest. Dierent statistical models are proposed to analyze survival data in the presence of cure fraction. In this thesis, we propose the use of new models. From the univariate case, we consider that the lifetime data have a three-parameter Burr XII distribution, which includes the popular Weibull mixture model as a special case. We consider a general survival model where the scale and shape parameters of the Burr XII distribution depends on covariates. Also considering the univariate case the two-parameters exponentiated exponential distribution is used. The two-parameter exponentiated exponential or the generalized exponential distribution is a particular member of the exponentiated Weibull distribution introduced by Mudholkar and Srivastava (1993). We also consider in this case a general survival model where the scale, shape and cured fraction parameters of the exponentiated exponential distribution depends on covariates. We also introduce the univariate Weibull distributions in presence of cure fraction, censored data and covariates. Two models are explored in this case: the mixture model and non-mixture model. When we have two lifetimes associated with each unit (bivariate data), we can use some bivariate distributions: as special case the Block and Basu bivariate lifetime distribution. We also presents estimates for the parameters included in Block and Basu bivariate lifetime distribution in presence of covariates and cure fraction, applied to analyze survival data when some individuals may never experience the event of interest and two lifetimes are associated with each unit. We also consider in bivariate case the bivariate Weibull distributions derived from copula functions in presence of cure fraction, censored data and covariates. Two copula functions are explored in this paper: the Farlie-Gumbel-Morgenstern copula (FGM) and the Gumbel copula. Classical and Bayesian procedures are used to get point and condence intervals of the unknown parameters. Illustrations of the proposed methodologies are given considering medicals data sets.
3

Pricing for First-to-Default Credit Default Swap with Copula

林智勇, Lin,Chih Yung Unknown Date (has links)
The first-to-default Credit Default Swap (CDS) with multiple assets is priced when the default barrier is changing over time, which is contrast to the assumption in most of the structural-form models. The survival function of each asset follows the lognormal distribution and the interest rate is constant over time in this article. We define the joint survival function of these assets by employing the normal and Student-t copula functions to characterize the dependence among different default probability of each asset. In addition, we investigate the empirical evidences in the pricing of CDS with two or three companies by changing the values of parameters in the model. The more interesting results show that the joint default probability increases as these assets are more positive correlated. Consequently, the price of the first-to-default CDS is much higher.
4

Trois essais en finance de marché / Three essays in finance of markets

Tavin, Bertrand 07 November 2013 (has links)
Le but de cette thèse est l'étude de certains aspects d'un marché financier comportant plusieurs actifs risqués et des options écrites sur ces actifs. Dans un premier essai, nous proposons une expression de la distribution implicite du prix d'un actif sous-jacent en fonction du smile de volatilité associé aux options écrites sur cet actif. L'expression obtenue pour la densité implicite prend la forme d'une densité log-normale plus deux termes d'ajustement. La mise en œuvre de ce résultat est ensuite illustrée à travers deux applications pratiques. Dans le deuxième essai, nous obtenons deux caractérisations de l'absence d'opportunité d'arbitrage en termes de fonctions copules. Chacune de ces caractérisations conduit à une méthode de détection des situations d'arbitrage. La première méthode proposée repose sur une propriété particulière des copules de Bernstein. La seconde méthode est valable dans le cas bivarié et tire profit de résultats sur les bornes de Fréchet-Hoeffding en présence d'information additionnelle sur la dépendance. Les résultats de l'utilisation de ces méthodes sur des données empiriques sont présentés. Enfin, dans le troisième essai, nous proposons une approche pour couvrir avec des options sur spread l'exposition au risque de dépendance d'un portefeuille d'options écrites sur deux actifs. L'approche proposée repose sur l'utilisation de deux modèles paramétriques de dépendance que nous introduisons: les copules Power Frank (PF) et Power Student's t (PST). Le fonctionnement et les résultats de l'approche proposée sont illustrés dans une étude numérique. / This thesis is dedicated to the study of a market with several risky assets and options written on these assets. In a first essay, we express the implied distribution of an underlying asset price as a function of its options implied volatility smile. For the density, the obtained expression has the form of a log-normal density plus two adjustment terms. We then explain how to use these results and develop practical applications. In a first application we value a portfolio of digital options and in another application we fit a parametric distribution. In the second essay, we propose a twofold characterization of the absence of arbitrage opportunity in terms of copula functions. We then propose two detection methods. The first method relies on a particular property of Bernstein copulas. The second method, valid only in the case of a market with two risky assets, is based upon results on improved Fréchet-Hoeffding bounds in presence of additional information about the dependence. We also present results obtained with the proposed methods applied to empirical data. Finally, in the third essay, we develop an approach to hedge, with spread options, an exposure to dependence risk for a portfolio comprising two-asset options. The approach we propose is based on two parametric models of dependence that we introduce. These dependence models are copulas functions named Power Frank (PF) and Power Student's t (PST). The results obtained with the proposed approach are detailed in a numerical study.

Page generated in 0.093 seconds