• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reproductive Biology of the Deep-Water Gorgonian Coral Acanella arbuscula from the Northwest Atlantic

Beazley, Lindsay 11 February 2011 (has links)
This thesis examined the reproductive biology of the poorly-known deep-water gorgonian Acanella arbuscula from the Northwest Atlantic. Colonies were collected from The Gully in 2007 and 2010 between 914 and 1860 m depth, and the Flemish Cap in 2009 between 671 and 1264 m. Mean polyp fecundity was relatively high for both females and males, and the large oocyte size suggests that A. arbuscula produces lecithotrophic larvae. This species may have overlapping periodic or seasonal cycles of gametogenesis, and the absence of planulae suggests that A. arbuscula is a broadcast spawner. No spatial variation in the reproductive characteristics of this species was found, suggesting that environmental conditions are similar between the two sites. Female polyp fecundity decreased with increasing depth, which may be due to the high cost of producing oocytes versus sperm. The relatively high mean polyp fecundity, probable lecithotrophic larval development, and broadcast spawning may allow for the wide dispersal and settlement of A. arbuscula across the North Atlantic.
2

Population Demographics and Sexual Reproduction Potential of the Pillar Coral, Dendrogyra cylindrus, on the Florida Reef Tract

Kabay, Lystina 08 December 2016 (has links)
The pillar coral, Dendrogyra cylindrus, has been commonly described as widely distributed, but rare throughout its geographical range in the Caribbean. Having recently been listed as Threatened under the US Endangered Species Act, an understanding of population status is needed to promote species conservation and population recovery. Previous to this study the status of the pillar coral population in the state waters of Florida, U.S.A, was relatively unknown primarily due to few colonies being recorded and no comprehensive summary of population abundance, distribution or health being completed. Along with various environmental and anthropogenic factors affecting the pillar coral population on the Florida Reef Tract (FRT), it appears that reproductive limitations may also be contributing to species decline and limiting population recovery as evidenced by the lack of reported juvenile D. cylindrus colonies reported on the Florida Reef Tract (FRT) in the past 17 years. The factors contributing to this phenomenon are currently unknown, however are suspected to be derived from the pillar corals reproductive biology. Being described as a gonochoric, broadcast spawner, sexual reproduction relies on the synchronous release of gametes from colonies of separate sexes, and with low adult colony densities reported for the pillar coral on the FRT, gamete concentrations from both sexes may be too low for fertilization to occur. In 2014 submissions of pillar coral locations from the scientific and lay community were compiled and 610 D. cylindrus colonies along Florida Reef Tract were identified (Lunz et al. 2016). In my study, I describe the population structure of D. cylindrus for the southeast Florida region of the FRT which includes 65 of the total 610 colonies. For each of the 65 colonies, colony depth, demographic, and condition data were recorded including size (length, width, and height), percent of recent mortality, and presence and severity of disease and bleaching. Out of all locations identified in this region, about 50% contained only a single colony of D. cylindrus and the maximum number of colonies per site was 14. Throughout the duration of the study, devastating losses of live tissue were observed following the bleaching and disease events impacting the Florida Reef Tract in 2014, 2015, and 2016 and the status of the southeast Florida population of pillar coral is at serious risk of local extinction. To investigate the ability of colonies of D. cylindrus to sexually reproduce (referred to as sexual reproduction potential) tissue samples were collected from 95 colonies within 15 sites along the FRT and were prepared for histological analysis. The sex of each colony, sizes of gametes in mature developmental stages, the abundance of gametes per cm2 of tissue, and sex ratios for locations on the FRT were reported. All tissue samples from male and female colonies contained gametes that were ≥90% mature; however sex ratios were found to be skewed in all locations, deviating significantly from the 1:1 ratio expected for typical resource allocation in random mating. Hermaphroditic colonies of D. cylindrus are described for the first time throughout its geographical range in this study and comparisons to gonochoristic colonies confirmed that these hermaphrodites are sexually reproductive individuals. Results from this effort provide a more thorough understanding of the reproductive biology of D. cylindrus and essential data for the support of future conservation management and restoration strategies for this FRT population and comparative data for other Caribbean populations.
3

Reproduction and recruitment of scleractinian corals on equatorial reefs in Mombasa, Kenya

Mangubhai, Sangeeta Unknown Date (has links)
This study examined patterns of coral reproduction and recruitment on lagoonal reefs adjacent to Mombasa in Kenya, at latitude 4ºS. Very little detailed research has been done on the reproductive patterns of scleractinian corals on equatorial reefs, where it has been suggested that seasonality and spawning synchrony may break down due to the weak environmental cues that are thought to govern the onset and timing of reproduction. Gametogenic data were collected for three faviid (Echinopora gemmacea, Platygyra daedalea and Leptoria phrygia) and three Acropora species (A. tenuis, A. valida and Acropora sp.1) in the Mombasa Marine National Park and Reserve between April 2003 – May 2005. A further 20 species of Acropora were identified (9 species represented range extensions) and marked to examine intra- and inter-specific spawning synchrony within this genus. In comparison to other regions, the overall pattern of coral reproduction in Kenya was found to be asynchronous, with spawning occurring over 9 months of the year from August – April, with some level of ‘temporal reproductive isolation’ occurring between species in relation to the main lunar month and lunar quarter when spawning occurred. Proximate cues governing the timing of reproduction could not be clearly discerned in Kenya with spawning occurring during both rising and maximum temperatures, during both neap and spring tides and across all lunar phases. Acropora species spawned over a 7-month period between October – April and faviid species over a 5-month period from December - April. The timing of reproduction in Acropora varied both within and among species, with the main release of gametes occurring from January – March when sea surface temperatures were at their summer maximum. Individual species released gametes over 2-5 months. The greatest overlap in spawning Acropora species occurred in February, which coincided with the spawning months of P. daedalea and E. gemmacea and suggests that some degree of multispecific spawning is a characteristic of Kenyan reefs. Within the main spawning period individual Acropora species had their main spawning in different lunar months. Acropora species released gametes in all lunar quarters, with the highest number of colonies and species spawning in the 3rd lunar quarter (i.e. in the 7 nights after full moon). Spawning in the faviids was more synchronised than Acropora species with the majority of faviid corals spawning in the 3rd lunar quarter. Single annual cycles of gametogenesis were recorded in E. gemmacea, A. tenuis, L.phrygia, most colonies of A. valida and Acropora sp.1, and in 84% of P. daedalea colonies. Biannual cycles of gametogenesis were recorded in 16% of P.daedalea colonies, which included two morphotypes identified in the Mombasa lagoon through morphometric and genetic studies. The presence of different oocyte sizes in L.phrygia during gametogenesis suggested that in some colonies there were two slightly overlapping oogenic cycles, which terminated in spawning within 1-2 months of each other. Overlapping oogenic cycles have not previously been recorded in hermaphroditic broadcast spawning corals in the tropics. The findings from Kenya support the hypothesis of protracted breeding seasons and a breakdown of spawning synchrony nearer the equator. It is hypothesised that the high fecundities recorded in faviid and Acropora species in Kenya compared to other regions, may allow reef corals to stagger their reproduction over 2-5 months, without incurring a significant reduction in fertilisation rates. Spat from the Family Pocilloporidae dominated settlement tiles in the Marine National Park and Reserve comprising 93.7% of spat, which contrasts with other tropical reefs where Acroporidae spat dominate. Patterns of settlement of Acroporidae spat generally coincided with the timing and extended spawning season in Acropora species in Kenya. The density and relative composition of coral recruits and juvenile corals on natural substrata recorded during this study were similar to those recorded before the 1997-98 bleaching event. There is no evidence to suggest that Kenya’s reefs have undergone a phase-shift in community structure, and reef recovery is occurring post-bleaching with mean percent hard coral cover currently at 25%. The slow rate of recovery of Kenya’s reefs is likely to reflect the scale of the mortality, source and availability of coral larvae as well as post-settlement processes operating at individual sites. In the medium-term, the recovery of Kenya’s reefs appears to be more strongly dependent on larvae from local reefs.
4

Reproduction and recruitment of scleractinian corals on equatorial reefs in Mombasa, Kenya

Mangubhai, Sangeeta Unknown Date (has links)
This study examined patterns of coral reproduction and recruitment on lagoonal reefs adjacent to Mombasa in Kenya, at latitude 4ºS. Very little detailed research has been done on the reproductive patterns of scleractinian corals on equatorial reefs, where it has been suggested that seasonality and spawning synchrony may break down due to the weak environmental cues that are thought to govern the onset and timing of reproduction. Gametogenic data were collected for three faviid (Echinopora gemmacea, Platygyra daedalea and Leptoria phrygia) and three Acropora species (A. tenuis, A. valida and Acropora sp.1) in the Mombasa Marine National Park and Reserve between April 2003 – May 2005. A further 20 species of Acropora were identified (9 species represented range extensions) and marked to examine intra- and inter-specific spawning synchrony within this genus. In comparison to other regions, the overall pattern of coral reproduction in Kenya was found to be asynchronous, with spawning occurring over 9 months of the year from August – April, with some level of ‘temporal reproductive isolation’ occurring between species in relation to the main lunar month and lunar quarter when spawning occurred. Proximate cues governing the timing of reproduction could not be clearly discerned in Kenya with spawning occurring during both rising and maximum temperatures, during both neap and spring tides and across all lunar phases. Acropora species spawned over a 7-month period between October – April and faviid species over a 5-month period from December - April. The timing of reproduction in Acropora varied both within and among species, with the main release of gametes occurring from January – March when sea surface temperatures were at their summer maximum. Individual species released gametes over 2-5 months. The greatest overlap in spawning Acropora species occurred in February, which coincided with the spawning months of P. daedalea and E. gemmacea and suggests that some degree of multispecific spawning is a characteristic of Kenyan reefs. Within the main spawning period individual Acropora species had their main spawning in different lunar months. Acropora species released gametes in all lunar quarters, with the highest number of colonies and species spawning in the 3rd lunar quarter (i.e. in the 7 nights after full moon). Spawning in the faviids was more synchronised than Acropora species with the majority of faviid corals spawning in the 3rd lunar quarter. Single annual cycles of gametogenesis were recorded in E. gemmacea, A. tenuis, L.phrygia, most colonies of A. valida and Acropora sp.1, and in 84% of P. daedalea colonies. Biannual cycles of gametogenesis were recorded in 16% of P.daedalea colonies, which included two morphotypes identified in the Mombasa lagoon through morphometric and genetic studies. The presence of different oocyte sizes in L.phrygia during gametogenesis suggested that in some colonies there were two slightly overlapping oogenic cycles, which terminated in spawning within 1-2 months of each other. Overlapping oogenic cycles have not previously been recorded in hermaphroditic broadcast spawning corals in the tropics. The findings from Kenya support the hypothesis of protracted breeding seasons and a breakdown of spawning synchrony nearer the equator. It is hypothesised that the high fecundities recorded in faviid and Acropora species in Kenya compared to other regions, may allow reef corals to stagger their reproduction over 2-5 months, without incurring a significant reduction in fertilisation rates. Spat from the Family Pocilloporidae dominated settlement tiles in the Marine National Park and Reserve comprising 93.7% of spat, which contrasts with other tropical reefs where Acroporidae spat dominate. Patterns of settlement of Acroporidae spat generally coincided with the timing and extended spawning season in Acropora species in Kenya. The density and relative composition of coral recruits and juvenile corals on natural substrata recorded during this study were similar to those recorded before the 1997-98 bleaching event. There is no evidence to suggest that Kenya’s reefs have undergone a phase-shift in community structure, and reef recovery is occurring post-bleaching with mean percent hard coral cover currently at 25%. The slow rate of recovery of Kenya’s reefs is likely to reflect the scale of the mortality, source and availability of coral larvae as well as post-settlement processes operating at individual sites. In the medium-term, the recovery of Kenya’s reefs appears to be more strongly dependent on larvae from local reefs.
5

Reproduction and recruitment of scleractinian corals on equatorial reefs in Mombasa, Kenya

Mangubhai, Sangeeta Unknown Date (has links)
This study examined patterns of coral reproduction and recruitment on lagoonal reefs adjacent to Mombasa in Kenya, at latitude 4ºS. Very little detailed research has been done on the reproductive patterns of scleractinian corals on equatorial reefs, where it has been suggested that seasonality and spawning synchrony may break down due to the weak environmental cues that are thought to govern the onset and timing of reproduction. Gametogenic data were collected for three faviid (Echinopora gemmacea, Platygyra daedalea and Leptoria phrygia) and three Acropora species (A. tenuis, A. valida and Acropora sp.1) in the Mombasa Marine National Park and Reserve between April 2003 – May 2005. A further 20 species of Acropora were identified (9 species represented range extensions) and marked to examine intra- and inter-specific spawning synchrony within this genus. In comparison to other regions, the overall pattern of coral reproduction in Kenya was found to be asynchronous, with spawning occurring over 9 months of the year from August – April, with some level of ‘temporal reproductive isolation’ occurring between species in relation to the main lunar month and lunar quarter when spawning occurred. Proximate cues governing the timing of reproduction could not be clearly discerned in Kenya with spawning occurring during both rising and maximum temperatures, during both neap and spring tides and across all lunar phases. Acropora species spawned over a 7-month period between October – April and faviid species over a 5-month period from December - April. The timing of reproduction in Acropora varied both within and among species, with the main release of gametes occurring from January – March when sea surface temperatures were at their summer maximum. Individual species released gametes over 2-5 months. The greatest overlap in spawning Acropora species occurred in February, which coincided with the spawning months of P. daedalea and E. gemmacea and suggests that some degree of multispecific spawning is a characteristic of Kenyan reefs. Within the main spawning period individual Acropora species had their main spawning in different lunar months. Acropora species released gametes in all lunar quarters, with the highest number of colonies and species spawning in the 3rd lunar quarter (i.e. in the 7 nights after full moon). Spawning in the faviids was more synchronised than Acropora species with the majority of faviid corals spawning in the 3rd lunar quarter. Single annual cycles of gametogenesis were recorded in E. gemmacea, A. tenuis, L.phrygia, most colonies of A. valida and Acropora sp.1, and in 84% of P. daedalea colonies. Biannual cycles of gametogenesis were recorded in 16% of P.daedalea colonies, which included two morphotypes identified in the Mombasa lagoon through morphometric and genetic studies. The presence of different oocyte sizes in L.phrygia during gametogenesis suggested that in some colonies there were two slightly overlapping oogenic cycles, which terminated in spawning within 1-2 months of each other. Overlapping oogenic cycles have not previously been recorded in hermaphroditic broadcast spawning corals in the tropics. The findings from Kenya support the hypothesis of protracted breeding seasons and a breakdown of spawning synchrony nearer the equator. It is hypothesised that the high fecundities recorded in faviid and Acropora species in Kenya compared to other regions, may allow reef corals to stagger their reproduction over 2-5 months, without incurring a significant reduction in fertilisation rates. Spat from the Family Pocilloporidae dominated settlement tiles in the Marine National Park and Reserve comprising 93.7% of spat, which contrasts with other tropical reefs where Acroporidae spat dominate. Patterns of settlement of Acroporidae spat generally coincided with the timing and extended spawning season in Acropora species in Kenya. The density and relative composition of coral recruits and juvenile corals on natural substrata recorded during this study were similar to those recorded before the 1997-98 bleaching event. There is no evidence to suggest that Kenya’s reefs have undergone a phase-shift in community structure, and reef recovery is occurring post-bleaching with mean percent hard coral cover currently at 25%. The slow rate of recovery of Kenya’s reefs is likely to reflect the scale of the mortality, source and availability of coral larvae as well as post-settlement processes operating at individual sites. In the medium-term, the recovery of Kenya’s reefs appears to be more strongly dependent on larvae from local reefs.

Page generated in 0.1288 seconds