• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la correction de la diffusion atmosphérique et du rayonnement solaire réfléchi par la surface agitée de la mer pour l'observation de la couleur de l'océan depuis l'espace / Study of the correction of the atmospheric scattering and the sun glint for the observations of ocean colour from space

Steinmetz, François 19 February 2008 (has links)
La principale difficulté pour l'observation de la "couleur de l'océan" depuis l'espace est d'effectuer les corrections atmosphériques, c'est à dire extraire le signal provenant des océans du signal total largement dominé par la contribution de l'atmosphère. Dans ce cadre, des problèmes spécifiques liés aux capteurs satellitaires utilisés, ou aux conditions d'observations, peuvent apparaître. Dans le cas du capteur POLDER-3, nous avons diagnostiqué des défauts sur les produits marins grâce aux mesures in situ BOUSSOLE, notamment attribuables aux données d'entrée (de niveau 1), et de proposer plusieurs ajustements. Ces modifications ont abouti à une amélioration majeure de précision des produits, d'un facteur 1.5 à 2. De plus, le même algorithme de correction atmosphérique a été appliqué aux données du capteur MERlS, ce qui a permis de mettre en évidence ses propriétés de fonctionnement. Les algorithmes de correction atmosphérique existants sont également limités par la tâche brillante du rayonnement solaire réfléchi par la surface agitée de la mer (le sun glint), ne pouvant fonctionner lorsque ce signal est trop intense. Pour de nombreux capteurs (MERlS, MODIS ... ) ceci rend près de la moitié des observations aux latitudes subtropicales inutilisables. Nous proposons un algorithme, appelé POLYMER, conçu pour fonctionner sur l'ensemble du sun glint. Si le gain en couverture spatiale est spectaculaire, il se fait encore au détriment de la précision des produits. Néanmoins, cet algorithme montre qu'il est possible d'utiliser de données contaminées par le sun glint pour la couleur de l'océan, et ouvre de nouvelles perspective pour les applications futures. / The main challenge for observing the”ocean colour” from space is to make the atmospheric correction which consists in extracting the marine signal from the measured dominated by the atmospheric scattering. In this context, we have studied specific problems that arise due to the quality of the sensor radiometry or to the viewing conditions. In the case of POLDER-3, we have used the in situ BOUSSOLE data to detect some problems, one of which can be attributed to a defect in the input (level1) data. We have made empirical corrections for these defects, resulting in an improvement of the accuracy of the marine reflectance products by a factor 1.5 to 2. Moreover, the same atmospheric correction algorithm was applied to the MERIS data to emphasize some of its features. The existing atmospheric correction algorithms are also limited by the sunglint, failing to retrieve marine parameters in the bright pattern of the sun reflected by the wavy sea surface. For many sensors (MERIS,MODIS...), this makes almost half of the observations at subtropical latitudes unusable, reducing the global coverage accordingly. We are presenting an original algorithm, called POLYMER, designed to make atmospheric correction over the whole sun glint pattern. The increase of spatial coverage is spectacular, while the accuracy on the retrieved marine parameters remains acceptable.This study shows that itis possible to retrieve the ocean colour in the sun glint contaminated areas and opens new opportunities for future applications.
2

Corrections atmosphériques pour capteurs à très haute résolution spatiale en zone littorale / Atmospheric corrections for high resolution sensors for coastal applications

Bru, Driss 01 December 2015 (has links)
La zone littorale concentre des enjeux socio-économiques et environnementaux majeurs. Pour comprendre la dynamique des systèmes associés et prévoir leurs évolutions, en particulier dans un contexte de forte pression anthropique et de changement climatique, il est nécessaire de s’appuyer sur des systèmes d’observation pérennes fournissant des données robustes. Par son emprise spatiale, la télédétection de la couleur de l’eau a démontré ces dernières années son fort potentiel pour l’observation du littoral et tend à devenir une composante centrale des systèmes d’observation. Néanmoins, les capteurs à très haute résolution spatiale (noté par la suite THRS), adaptés à l’observation petite échelle des processus physiques et bio-géochimiques qui caractérisent la dynamique de la zone littorale, présentent encore de fortes limitations nécessitant des développements techniques et scientifiques importants. Dans le cadre de cette thèse, je vais m’intéresser au problème des corrections atmosphériques. Ces dernières représentent une étape clé du traitement du signal en télédétection de la couleur de l’eau. Elles permettent d’extraire du signal total mesuré par un radiomètre embarqué sur une plateforme spatiale, le signal marin. Ce signal, qui ne représente qu’environ 10% du signal total, est ensuite utilisé pour mesurer, à partir de modèles d’inversion, des paramètres physiques et bio-géochimiques caractérisant les systèmes aquatiques marins et continentaux. Or, les méthodes de corrections atmosphériques développées pour les missions standards en couleur de l’océan sont le plus souvent inadaptées ou inopérantes pour les capteurs THRS du fait de caractéristiques instrumentales moins poussées (faible résolution spectrales et faible rapport signal sur bruit). Mon travail a été d’abord de développer une méthode de corrections atmosphériques innovante basée sur la construction d’un modèle aérosol local, le modèle ISAC. Ce modèle aérosol est le résultat de l’étude des variations des propriétés optiques et microphysiques des aérosols sur Arcachon, basée sur 4 années de données AERONET. Cette méthode a par la suite été appliquée sur des images Landsat 8 et les résultats obtenus ont été évalués avec d’autres méthodes standards de corrections atmosphériques. Puis, une comparaison avec des données terrain a permis de valider et de montrer les bonnes performances de la méthode. Enfin, les images corrigées avec la méthode ISAC ont été utilisées afin d’évaluer les performances d’un modèle d’inversion permettant d’extraire la bathymétrie. / The coastal area accumulates major socio-economic and environmental issues. To understand the dynamics of the associated systems and predict their evolution, particularly in a context of strong human pressure and climate change, it is necessary to rely on long-termobservation systems providing robust data. By its spatial extent, ocean color remote sensing has demonstrated in recent years its strong potential for the observation of the coast and tends to become a central component of observation systems. However, very high resolution sensors (hereafter named THRS), suitable for small-scale observation of the physical and biogeochemical processes that characterize the dynamics of the coastal zone, still have strong limitations requiring important technical and scientific developments. As part of my PhD, I will focus on the atmospheric correction issues. The latter represent a key step of the signal processing in ocean color remote sensing. They are used to extract the marine signal from the total signal measured the sensor through an onboard radiometer. This signal, which only represents about 10% of the total signal, is used to measure, from inversion models, physical and biogeochemical parameters characterizing the marine and continental aquatic systems. However, atmospheric correction methods developed for ocean missions are often inadequate or ineffective for THRS sensors due to lower instrumental characteristics (low spectral resolution and low signal to noise ratio). My work was first to develop an innovative atmospheric correction method based on the elaboration of a local aerosol model, the ISAC model. This aerosol model is the result of the study of variations of the optical and microphysical properties of aerosol over Arcachon, based on four years of AERONET data. This method has later been applied to Landsat 8 images and the results were evaluated with other standard methods. Then, a comparison with field data was used to validate and demonstrate the good performance of the method. Finally, the ISAC’s corrected images were used used to evaluate the performance of an inversion model to extract bathymetry.
3

Caractérisation des aérosols atmosphériques en milieu urbain par télédétection à très haute résolution spatiale

Thomas, Colin 11 January 2010 (has links) (PDF)
La réalisation de nouveaux instruments de télédétection à très haute résolution spatiale offre la possibilité d'étudier plus précisément les villes. Pour ces études, la connaissance de l'atmosphère et plus particulièrement des aérosols peut s'avérer essentielle. Le but de cette thèse est donc de développer une méthode de caractérisation des aérosols adaptée aux images de télédétection des milieux urbains à l'échelle métrique dans les domaines visible et proche-infrarouge. Dans un premier temps, les propriétés optiques de ces particules ont été étudiées en utilisant les données fournies par 68 stations urbaines du réseau AERONET. Ensuite, afin de pouvoir évaluer l'impact des aérosols présents dans les villes sur le signal, un code de transfert radiatif 3D a été réalisé : AMARTIS v2. L'utilisation de cet outil pour une scène urbaine typique a permis de quantifier l'impact des particules sur le signal, à l'ombre et au soleil, en fonction de leurs propriétés optiques. Enfin, une méthode de télédétection des aérosols a été définie, basée sur l'observation de transitions ombre/soleil. Afin de mettre en oeuvre cette méthode, un code d'inversion a été développé : OSIS. Une étude de sensibilité d'OSIS a alors été menée à partir d'images synthétiques générées avec AMARTIS v2 et une utilisation expérimentale a été effectuée sur des acquisitions PELICAN obtenues lors de la campagne aéroportée MUSARDE sur la ville de Toulouse. Ces études ont notamment permis de quantifier la précision intrinsèque d'OSIS, comparable aux précisions obtenues avec les produits satellitaires pour l'inversion des épaisseurs optiques, et de montrer que cette procédure est applicable à tout instrument à très haute résolution spatiale, multispectral ou hyperspectral, aéroporté ou satellitaire.
4

REFLECT : logiciel de restitution des réflectances au sol pour l’amélioration de la qualité de l'information extraite des images satellitales à haute résolution spatiale

Bouroubi, Yacine M. 10 1900 (has links)
Les images satellitales multispectrales, notamment celles à haute résolution spatiale (plus fine que 30 m au sol), représentent une source d’information inestimable pour la prise de décision dans divers domaines liés à la gestion des ressources naturelles, à la préservation de l’environnement ou à l’aménagement et la gestion des centres urbains. Les échelles d’étude peuvent aller du local (résolutions plus fines que 5 m) à des échelles régionales (résolutions plus grossières que 5 m). Ces images caractérisent la variation de la réflectance des objets dans le spectre qui est l’information clé pour un grand nombre d’applications de ces données. Or, les mesures des capteurs satellitaux sont aussi affectées par des facteurs « parasites » liés aux conditions d’éclairement et d’observation, à l’atmosphère, à la topographie et aux propriétés des capteurs. Deux questions nous ont préoccupé dans cette recherche. Quelle est la meilleure approche pour restituer les réflectances au sol à partir des valeurs numériques enregistrées par les capteurs tenant compte des ces facteurs parasites ? Cette restitution est-elle la condition sine qua non pour extraire une information fiable des images en fonction des problématiques propres aux différents domaines d’application des images (cartographie du territoire, monitoring de l’environnement, suivi des changements du paysage, inventaires des ressources, etc.) ? Les recherches effectuées les 30 dernières années ont abouti à une série de techniques de correction des données des effets des facteurs parasites dont certaines permettent de restituer les réflectances au sol. Plusieurs questions sont cependant encore en suspens et d’autres nécessitent des approfondissements afin, d’une part d’améliorer la précision des résultats et d’autre part, de rendre ces techniques plus versatiles en les adaptant à un plus large éventail de conditions d’acquisition des données. Nous pouvons en mentionner quelques unes : - Comment prendre en compte des caractéristiques atmosphériques (notamment des particules d’aérosol) adaptées à des conditions locales et régionales et ne pas se fier à des modèles par défaut qui indiquent des tendances spatiotemporelles à long terme mais s’ajustent mal à des observations instantanées et restreintes spatialement ? - Comment tenir compte des effets de « contamination » du signal provenant de l’objet visé par le capteur par les signaux provenant des objets environnant (effet d’adjacence) ? ce phénomène devient très important pour des images de résolution plus fine que 5 m; - Quels sont les effets des angles de visée des capteurs hors nadir qui sont de plus en plus présents puisqu’ils offrent une meilleure résolution temporelle et la possibilité d’obtenir des couples d’images stéréoscopiques ? - Comment augmenter l’efficacité des techniques de traitement et d’analyse automatique des images multispectrales à des terrains accidentés et montagneux tenant compte des effets multiples du relief topographique sur le signal capté à distance ? D’autre part, malgré les nombreuses démonstrations par des chercheurs que l’information extraite des images satellitales peut être altérée à cause des tous ces facteurs parasites, force est de constater aujourd’hui que les corrections radiométriques demeurent peu utilisées sur une base routinière tel qu’est le cas pour les corrections géométriques. Pour ces dernières, les logiciels commerciaux de télédétection possèdent des algorithmes versatiles, puissants et à la portée des utilisateurs. Les algorithmes des corrections radiométriques, lorsqu’ils sont proposés, demeurent des boîtes noires peu flexibles nécessitant la plupart de temps des utilisateurs experts en la matière. Les objectifs que nous nous sommes fixés dans cette recherche sont les suivants : 1) Développer un logiciel de restitution des réflectances au sol tenant compte des questions posées ci-haut. Ce logiciel devait être suffisamment modulaire pour pouvoir le bonifier, l’améliorer et l’adapter à diverses problématiques d’application d’images satellitales; et 2) Appliquer ce logiciel dans différents contextes (urbain, agricole, forestier) et analyser les résultats obtenus afin d’évaluer le gain en précision de l’information extraite par des images satellitales transformées en images des réflectances au sol et par conséquent la nécessité d’opérer ainsi peu importe la problématique de l’application. Ainsi, à travers cette recherche, nous avons réalisé un outil de restitution de la réflectance au sol (la nouvelle version du logiciel REFLECT). Ce logiciel est basé sur la formulation (et les routines) du code 6S (Seconde Simulation du Signal Satellitaire dans le Spectre Solaire) et sur la méthode des cibles obscures pour l’estimation de l’épaisseur optique des aérosols (aerosol optical depth, AOD), qui est le facteur le plus difficile à corriger. Des améliorations substantielles ont été apportées aux modèles existants. Ces améliorations concernent essentiellement les propriétés des aérosols (intégration d’un modèle plus récent, amélioration de la recherche des cibles obscures pour l’estimation de l’AOD), la prise en compte de l’effet d’adjacence à l’aide d’un modèle de réflexion spéculaire, la prise en compte de la majorité des capteurs multispectraux à haute résolution (Landsat TM et ETM+, tous les HR de SPOT 1 à 5, EO-1 ALI et ASTER) et à très haute résolution (QuickBird et Ikonos) utilisés actuellement et la correction des effets topographiques l’aide d’un modèle qui sépare les composantes directe et diffuse du rayonnement solaire et qui s’adapte également à la canopée forestière. Les travaux de validation ont montré que la restitution de la réflectance au sol par REFLECT se fait avec une précision de l’ordre de ±0.01 unités de réflectance (pour les bandes spectrales du visible, PIR et MIR), même dans le cas d’une surface à topographie variable. Ce logiciel a permis de montrer, à travers des simulations de réflectances apparentes à quel point les facteurs parasites influant les valeurs numériques des images pouvaient modifier le signal utile qui est la réflectance au sol (erreurs de 10 à plus de 50%). REFLECT a également été utilisé pour voir l’importance de l’utilisation des réflectances au sol plutôt que les valeurs numériques brutes pour diverses applications courantes de la télédétection dans les domaines des classifications, du suivi des changements, de l’agriculture et de la foresterie. Dans la majorité des applications (suivi des changements par images multi-dates, utilisation d’indices de végétation, estimation de paramètres biophysiques, …), la correction des images est une opération cruciale pour obtenir des résultats fiables. D’un point de vue informatique, le logiciel REFLECT se présente comme une série de menus simples d’utilisation correspondant aux différentes étapes de saisie des intrants de la scène, calcul des transmittances gazeuses, estimation de l’AOD par la méthode des cibles obscures et enfin, l’application des corrections radiométriques à l’image, notamment par l’option rapide qui permet de traiter une image de 5000 par 5000 pixels en 15 minutes environ. Cette recherche ouvre une série de pistes pour d’autres améliorations des modèles et méthodes liés au domaine des corrections radiométriques, notamment en ce qui concerne l’intégration de la FDRB (fonction de distribution de la réflectance bidirectionnelle) dans la formulation, la prise en compte des nuages translucides à l’aide de la modélisation de la diffusion non sélective et l’automatisation de la méthode des pentes équivalentes proposée pour les corrections topographiques. / Multi-spectral satellite imagery, especially at high spatial resolution (finer than 30 m on the ground), represents an invaluable source of information for decision making in various domains in connection with natural resources management, environment preservation or urban planning and management. The mapping scales may range from local (finer resolution than 5 m) to regional (resolution coarser than 5m). The images are characterized by objects reflectance in the electromagnetic spectrum witch represents the key information in many applications. However, satellite sensor measurements are also affected by parasite input due to illumination and observation conditions, to the atmosphere, to topography and to sensor properties. Two questions have oriented this research. What is the best approach to retrieve surface reflectance with the measured values while taking into account these parasite factors? Is this retrieval a sine qua non condition for reliable image information extraction for the diverse domains of application for the images (mapping, environmental monitoring, landscape change detection, resources inventory, etc.)? Researches performed in the past 30 years have yielded a series of techniques to correct the parasite factors among which some allow to retrieve ground reflectance. Some questions are still unanswered and others require still more scrutiny to increase precision and to make these methods more versatile by adapting them to larger variety of data acquisition conditions. A few examples may be mentioned: - How to take into account atmospheric characteristics (particularly of aerosols) adapted to local and regional conditions instead of relying on default models indicating long term spatial-temporal trends that are hard to adjust to spatially restricted instantaneous observations; - How to remove noise introduced by surrounding objects. This adjacency effect phenomenon is particularly important for image resolutions smaller than 5m; - What is the effect of the viewing angle of the sensors that are increasingly aiming off-nadir, a choice imposed by the imperatives of a better temporal resolution or the acquisition of stereo pairs? - How to increase the performances of automatic multi-spectral image processing and analysis techniques in mountainous high relief area by taking into account the multiple effects of topography on the remotely sensed signal? Despite many demonstrations by researchers that information extracted from remote sensing may be altered due to the parasite factors, we are forced to note that nowadays radiometric corrections are still seldom applied, unlike geometric corrections for which commercial software possess powerful and versatile user-friendly algorithms. Radiometric correction algorithms, when available, are hard to adapt black boxes and mostly require experts to operate them. The goals we have delineated for this research are as follow: 1) Develop software to retrieve ground reflectance while taking into account the aspects mentioned earlier. This software had to be modular enough to allow improvement and adaptation to diverse remote sensing application problems; and 2) Apply this software in various context (urban, agricultural, forest) and analyse results to evaluate the accuracy gain of extracted information from remote sensing imagery transformed in ground reflectance images to demonstrate the necessity of operating in this way, whatever the type of application. During this research, we have developed a tool to retrieve ground reflectance (the new version of the REFLECT software). This software is based on the formulas (and routines) of the 6S code (Second Simulation of Satellite Signal in the Solar Spectrum) and on the dark targets method to estimated the aerosol optical thickness, representing the most difficult factor to correct. Substantial improvements have been made to the existing models. These improvements essentially concern the aerosols properties (integration of a more recent model, improvement of the dark targets selection to estimate the AOD), the adjacency effect, the adaptation to most used high resolution (Landsat TM and ETM+, all HR SPOT 1 to 5, EO-1 ALI and ASTER) and very high resolution (QuickBird et Ikonos) sensors and the correction of topographic effects with a model that separate direct and diffuse solar radiation components and the adaptation of this model to forest canopy. Validation has shown that ground reflectance estimation with REFLECT is performed with an accuracy of approximately ±0.01 in reflectance units (for in the visible, near-infrared and middle-infrared spectral bands) even for a surface with varying topography. This software has allowed demonstrating, through apparent reflectance simulations, how much parasite factors influencing numerical values of the images may alter the ground reflectance (errors ranging from 10 to 50%). REFLECT has also been used to examine the usefulness of ground reflectance instead of raw data for various common remote sensing applications in domains such as classification, change detection, agriculture and forestry. In most applications (multi-temporal change monitoring, use of vegetation indices, biophysical parameters estimation, etc.) image correction is a crucial step to obtain reliable results. From the computer environment standpoint, REFLECT is organized as a series of menus, corresponding to different steps of: input parameters introducing, gas transmittances calculation, AOD estimation, and finally image correction application, with the possibility of using the fast option witch process an image of 5000 by 5000 pixels in approximately 15 minutes. This research opens many possible pathways for improving methods and models in the realm of radiometric corrections of remotely sensed images. In particular, these include BRDF integration in the formulation, cirrus clouds correction using non selective scattering modelling and improving of the equivalent slopes topographic correction method.
5

REFLECT : logiciel de restitution des réflectances au sol pour l’amélioration de la qualité de l'information extraite des images satellitales à haute résolution spatiale

Bouroubi, Yacine M. 10 1900 (has links)
RÉSUMÉ - Les images satellitales multispectrales, notamment celles à haute résolution spatiale (plus fine que 30 m au sol), représentent une source d’information inestimable pour la prise de décision dans divers domaines liés à la gestion des ressources naturelles, à la préservation de l’environnement ou à l’aménagement et la gestion des centres urbains. Les échelles d’étude peuvent aller du local (résolutions plus fines que 5 m) à des échelles régionales (résolutions plus grossières que 5 m). Ces images caractérisent la variation de la réflectance des objets dans le spectre qui est l’information clé pour un grand nombre d’applications de ces données. Or, les mesures des capteurs satellitaux sont aussi affectées par des facteurs « parasites » liés aux conditions d’éclairement et d’observation, à l’atmosphère, à la topographie et aux propriétés des capteurs. Deux questions nous ont préoccupé dans cette recherche. Quelle est la meilleure approche pour restituer les réflectances au sol à partir des valeurs numériques enregistrées par les capteurs tenant compte des ces facteurs parasites ? Cette restitution est-elle la condition sine qua non pour extraire une information fiable des images en fonction des problématiques propres aux différents domaines d’application des images (cartographie du territoire, monitoring de l’environnement, suivi des changements du paysage, inventaires des ressources, etc.) ? Les recherches effectuées les 30 dernières années ont abouti à une série de techniques de correction des données des effets des facteurs parasites dont certaines permettent de restituer les réflectances au sol. Plusieurs questions sont cependant encore en suspens et d’autres nécessitent des approfondissements afin, d’une part d’améliorer la précision des résultats et d’autre part, de rendre ces techniques plus versatiles en les adaptant à un plus large éventail de conditions d’acquisition des données. Nous pouvons en mentionner quelques unes : - Comment prendre en compte des caractéristiques atmosphériques (notamment des particules d’aérosol) adaptées à des conditions locales et régionales et ne pas se fier à des modèles par défaut qui indiquent des tendances spatiotemporelles à long terme mais s’ajustent mal à des observations instantanées et restreintes spatialement ? - Comment tenir compte des effets de « contamination » du signal provenant de l’objet visé par le capteur par les signaux provenant des objets environnant (effet d’adjacence) ? ce phénomène devient très important pour des images de résolution plus fine que 5 m; - Quels sont les effets des angles de visée des capteurs hors nadir qui sont de plus en plus présents puisqu’ils offrent une meilleure résolution temporelle et la possibilité d’obtenir des couples d’images stéréoscopiques ? - Comment augmenter l’efficacité des techniques de traitement et d’analyse automatique des images multispectrales à des terrains accidentés et montagneux tenant compte des effets multiples du relief topographique sur le signal capté à distance ? D’autre part, malgré les nombreuses démonstrations par des chercheurs que l’information extraite des images satellitales peut être altérée à cause des tous ces facteurs parasites, force est de constater aujourd’hui que les corrections radiométriques demeurent peu utilisées sur une base routinière tel qu’est le cas pour les corrections géométriques. Pour ces dernières, les logiciels commerciaux de télédétection possèdent des algorithmes versatiles, puissants et à la portée des utilisateurs. Les algorithmes des corrections radiométriques, lorsqu’ils sont proposés, demeurent des boîtes noires peu flexibles nécessitant la plupart de temps des utilisateurs experts en la matière. Les objectifs que nous nous sommes fixés dans cette recherche sont les suivants : 1) Développer un logiciel de restitution des réflectances au sol tenant compte des questions posées ci-haut. Ce logiciel devait être suffisamment modulaire pour pouvoir le bonifier, l’améliorer et l’adapter à diverses problématiques d’application d’images satellitales; et 2) Appliquer ce logiciel dans différents contextes (urbain, agricole, forestier) et analyser les résultats obtenus afin d’évaluer le gain en précision de l’information extraite par des images satellitales transformées en images des réflectances au sol et par conséquent la nécessité d’opérer ainsi peu importe la problématique de l’application. Ainsi, à travers cette recherche, nous avons réalisé un outil de restitution de la réflectance au sol (la nouvelle version du logiciel REFLECT). Ce logiciel est basé sur la formulation (et les routines) du code 6S (Seconde Simulation du Signal Satellitaire dans le Spectre Solaire) et sur la méthode des cibles obscures pour l’estimation de l’épaisseur optique des aérosols (aerosol optical depth, AOD), qui est le facteur le plus difficile à corriger. Des améliorations substantielles ont été apportées aux modèles existants. Ces améliorations concernent essentiellement les propriétés des aérosols (intégration d’un modèle plus récent, amélioration de la recherche des cibles obscures pour l’estimation de l’AOD), la prise en compte de l’effet d’adjacence à l’aide d’un modèle de réflexion spéculaire, la prise en compte de la majorité des capteurs multispectraux à haute résolution (Landsat TM et ETM+, tous les HR de SPOT 1 à 5, EO-1 ALI et ASTER) et à très haute résolution (QuickBird et Ikonos) utilisés actuellement et la correction des effets topographiques l’aide d’un modèle qui sépare les composantes directe et diffuse du rayonnement solaire et qui s’adapte également à la canopée forestière. Les travaux de validation ont montré que la restitution de la réflectance au sol par REFLECT se fait avec une précision de l’ordre de ±0.01 unités de réflectance (pour les bandes spectrales du visible, PIR et MIR), même dans le cas d’une surface à topographie variable. Ce logiciel a permis de montrer, à travers des simulations de réflectances apparentes à quel point les facteurs parasites influant les valeurs numériques des images pouvaient modifier le signal utile qui est la réflectance au sol (erreurs de 10 à plus de 50%). REFLECT a également été utilisé pour voir l’importance de l’utilisation des réflectances au sol plutôt que les valeurs numériques brutes pour diverses applications courantes de la télédétection dans les domaines des classifications, du suivi des changements, de l’agriculture et de la foresterie. Dans la majorité des applications (suivi des changements par images multi-dates, utilisation d’indices de végétation, estimation de paramètres biophysiques, …), la correction des images est une opération cruciale pour obtenir des résultats fiables. D’un point de vue informatique, le logiciel REFLECT se présente comme une série de menus simples d’utilisation correspondant aux différentes étapes de saisie des intrants de la scène, calcul des transmittances gazeuses, estimation de l’AOD par la méthode des cibles obscures et enfin, l’application des corrections radiométriques à l’image, notamment par l’option rapide qui permet de traiter une image de 5000 par 5000 pixels en 15 minutes environ. Cette recherche ouvre une série de pistes pour d’autres améliorations des modèles et méthodes liés au domaine des corrections radiométriques, notamment en ce qui concerne l’intégration de la FDRB (fonction de distribution de la réflectance bidirectionnelle) dans la formulation, la prise en compte des nuages translucides à l’aide de la modélisation de la diffusion non sélective et l’automatisation de la méthode des pentes équivalentes proposée pour les corrections topographiques. / ABSTRACT - Multi-spectral satellite imagery, especially at high spatial resolution (finer than 30 m on the ground), represents an invaluable source of information for decision making in various domains in connection with natural resources management, environment preservation or urban planning and management. The mapping scales may range from local (finer resolution than 5 m) to regional (resolution coarser than 5m). The images are characterized by objects reflectance in the electromagnetic spectrum witch represents the key information in many applications. However, satellite sensor measurements are also affected by parasite input due to illumination and observation conditions, to the atmosphere, to topography and to sensor properties. Two questions have oriented this research. What is the best approach to retrieve surface reflectance with the measured values while taking into account these parasite factors? Is this retrieval a sine qua non condition for reliable image information extraction for the diverse domains of application for the images (mapping, environmental monitoring, landscape change detection, resources inventory, etc.)? Researches performed in the past 30 years have yielded a series of techniques to correct the parasite factors among which some allow to retrieve ground reflectance. Some questions are still unanswered and others require still more scrutiny to increase precision and to make these methods more versatile by adapting them to larger variety of data acquisition conditions. A few examples may be mentioned: - How to take into account atmospheric characteristics (particularly of aerosols) adapted to local and regional conditions instead of relying on default models indicating long term spatial-temporal trends that are hard to adjust to spatially restricted instantaneous observations; - How to remove noise introduced by surrounding objects. This adjacency effect phenomenon is particularly important for image resolutions smaller than 5m; - What is the effect of the viewing angle of the sensors that are increasingly aiming off-nadir, a choice imposed by the imperatives of a better temporal resolution or the acquisition of stereo pairs? - How to increase the performances of automatic multi-spectral image processing and analysis techniques in mountainous high relief area by taking into account the multiple effects of topography on the remotely sensed signal? Despite many demonstrations by researchers that information extracted from remote sensing may be altered due to the parasite factors, we are forced to note that nowadays radiometric corrections are still seldom applied, unlike geometric corrections for which commercial software possess powerful and versatile user-friendly algorithms. Radiometric correction algorithms, when available, are hard to adapt black boxes and mostly require experts to operate them. The goals we have delineated for this research are as follow: 1) Develop software to retrieve ground reflectance while taking into account the aspects mentioned earlier. This software had to be modular enough to allow improvement and adaptation to diverse remote sensing application problems; and 2) Apply this software in various context (urban, agricultural, forest) and analyse results to evaluate the accuracy gain of extracted information from remote sensing imagery transformed in ground reflectance images to demonstrate the necessity of operating in this way, whatever the type of application. During this research, we have developed a tool to retrieve ground reflectance (the new version of the REFLECT software). This software is based on the formulas (and routines) of the 6S code (Second Simulation of Satellite Signal in the Solar Spectrum) and on the dark targets method to estimated the aerosol optical thickness, representing the most difficult factor to correct. Substantial improvements have been made to the existing models. These improvements essentially concern the aerosols properties (integration of a more recent model, improvement of the dark targets selection to estimate the AOD), the adjacency effect, the adaptation to most used high resolution (Landsat TM and ETM+, all HR SPOT 1 to 5, EO-1 ALI and ASTER) and very high resolution (QuickBird et Ikonos) sensors and the correction of topographic effects with a model that separate direct and diffuse solar radiation components and the adaptation of this model to forest canopy. Validation has shown that ground reflectance estimation with REFLECT is performed with an accuracy of approximately ±0.01 in reflectance units (for in the visible, near-infrared and middle-infrared spectral bands) even for a surface with varying topography. This software has allowed demonstrating, through apparent reflectance simulations, how much parasite factors influencing numerical values of the images may alter the ground reflectance (errors ranging from 10 to 50%). REFLECT has also been used to examine the usefulness of ground reflectance instead of raw data for various common remote sensing applications in domains such as classification, change detection, agriculture and forestry. In most applications (multi-temporal change monitoring, use of vegetation indices, biophysical parameters estimation, etc.) image correction is a crucial step to obtain reliable results. From the computer environment standpoint, REFLECT is organized as a series of menus, corresponding to different steps of: input parameters introducing, gas transmittances calculation, AOD estimation, and finally image correction application, with the possibility of using the fast option witch process an image of 5000 by 5000 pixels in approximately 15 minutes. This research opens many possible pathways for improving methods and models in the realm of radiometric corrections of remotely sensed images. In particular, these include BRDF integration in the formulation, cirrus clouds correction using non selective scattering modelling and improving of the equivalent slopes topographic correction method.

Page generated in 0.1212 seconds