• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study on Small-Wavelength Form Error Removal by Hydrodynamic Polishing Process

Tsai, Ruei-Feng 10 July 2000 (has links)
In this thesis, several machining strategies to remove axially symmetric form error with small wavelength by Hydrodynamic Polishing process (abbreviated as HDP) were proposed. Three strategies were proposed progressively in the study so as to remove axially symmetric form error with small wavelength. The first and second tactics were based on a basic algorithm, say, directly solving of a set of simultaneous equations. In the first strategy, a set of simultaneous equations was constructed by relating the total machining action of each dwelling point to the corresponding initial error. Subsequently, a set of dwelling time was obtained by directly solving the simultaneous equations. The second strategy evaluates solutions in a similar way like the first one but more restrictions were concerned in solution evaluation. The third strategy is an optimal based method. A set of dwelling time was obtained by minimizing an objective function with given constraints. A series of computer simulations were conducted to estimate the residual error and examine the validity of the strategies. From the computer simulation, the first and second strategies were confronted with negative-time problem, so that merely limited improving of form precision was obtained. The proposed optimal strategy was shown to have high potential for improving the machining precision by the HDP process. Based on the proposed strategies, a better form precision of the work surface with small wavelength can be obtained.

Page generated in 0.0833 seconds